
Publishing Interactive Paper
Documents with OpenOffice

Master Project

Patrick Ponti
<pontip@student.ethz.ch>

Prof. Dr. Moira C. Norrie
Nadir Weibel

Global Information Systems Group
Institute of Information Systems

Department of Computer Science

1.0
12th August 2007

mailto:pontip@student.ethz.ch

Copyright © 2007 Global Information Systems Group.

Abstract

Earlier predictions of the paperless office no longer seem realistic. Paper as a medium has
many advantages over digital media in terms of how people can work with it, both individ-
ually and in groups. It is portable, cheap and robust. It is much more convenient to scan
through a book than to browse a digital document. Paper supports forms of collaboration and
interaction that are difficult to mimic in current digital world. Instead of replacing paper, we
have focused on linking the paper with the digital world, enabling users to freely navigate
within information spaces that span over printed and digital resources.
The main focus of this project is to further investigate and implement general approaches
enabling a dynamic mapping from physical (x,y) positions on paper to the original digital
content as defined at authoring time. The goal is to define a general infrastructure capable of
retrieving digital elements within the original authoring tool based on their physical position
on paper. The proposed solution has been applied to the particular case of the OpenOffice
authoring suite, but it has kept general enough to be used within other authoring tools (e.g.
MS Word). Finally, to prove the correctness of the proposed solution, an application based
on the document review facilities of OpenOffice has been deployed.

iii

iv

Contents

1 Introduction 1

2 Motivation and Related Work 5

3 Existing infrastructure 9
3.1 iPublish . 10
3.2 iDoc . 10
3.3 iServer . 13
3.4 iPaper . 14
3.5 iGesture . 14
3.6 Intelligent Character Recognition . 14

4 Document Life-Cycle 17

5 Technologies 21
5.1 OpenOffice and OpenOffice SDK . 21
5.2 Page Description Languages . 22

5.2.1 PostScript . 22
5.2.2 Portable Document Format . 23
5.2.3 XML Paper Specification . 24

5.3 Anoto . 27

6 Design and Implementation 31

7 Exemplar Application: PaperProof 45
7.1 Operations . 45
7.2 Implementation . 47

8 Results and Discussion 51
8.1 PaperProof in use . 51
8.2 Infrastructure . 55

9 Future Work 57
9.1 iPublish plug-in . 57
9.2 iDoc extension . 58
9.3 PaperProof . 59

v

vi CONTENTS

List of Figures

3.1 Existing Infrastrucure . 9
3.2 Mixed Digital and Physical Model . 11
3.3 Element Model . 11
3.4 The iDoc Framework . 12
3.5 iPaper Plug-In . 13

4.1 The Document Workflow . 17
4.2 The Publishing Process . 18

5.1 Glyph . 24
5.2 The XML Representation of a Glyphs node 25
5.3 The XML Representation of a Path Node 26
5.4 Anoto Pattern . 28
5.5 Anoto-Enabled Pen . 29

6.1 Highlighter Hierarchy . 32
6.2 A Highlighted OpenOffice Document . 33
6.3 a) Section and b) Paragraph Nodes . 34
6.4 Elements Hierarchy . 35
6.5 The Sub Elements . 36
6.6 The XML Representation of a Glyphs node 37
6.7 Deobfuscation Process . 38
6.8 Finder Classes . 40
6.9 Publisher Classes . 40
6.10 Automatic Granularity Processing . 42
6.11 AdapterXPSOO . 43
6.12 Retrieval Process . 43

7.1 Operations and Related Gestures . 46
7.2 TrackChangers Hierarchy . 47
7.3 The Corrections Constructor . 49
7.4 The execute()Method . 50

8.1 The Authoring Phase . 51
8.2 Free Form Annotations on a Paper Document 52
8.3 PaperProof Corrections within OpenOffice 52
8.4 Delete Operation . 53
8.5 Replace Operation . 53

vii

viii LIST OF FIGURES

8.6 Insert Operation . 53
8.7 Move Operation . 54
8.8 Two Point Annotation Operation . 54
8.9 Side Annotation Operation . 55

1
Introduction

The concept of the paperless office made its first appearance a few decades ago. The advent
of new technologies, such as the personal computer, and their increasing interactivity drove
people to imagine a world in which it was possible to completely abandon paper. The
continuous development of the existing technologies, further developed the idea of an empty
office, where all information is stored and ordered within personal computers.

However, many years after the early predictions of the paperless office, this idea has
become a myth. Paper still exists in all the offices of the world and its use even increased [1],
probably due to the parallel development and the massive distribution of printers and copy
machines that made the creation of paper documents easy and fast.
Moreover, although at first this might strike as a paradox, the birth and rise of e-mailing
contributed to increase the amount of paper in the offices. This may be easily explained by
considering the number of e-mail messages printed every day in the world.
Even with today’s screen quality and resolution, it is still more confortable to read a
document printed on paper, rather than directly on the screen. In the same way, it is much
simpler to proof-read or annotate a document on paper, especially considering mobility:
paper allows to access information in any place, like for instance during a train journey.
Another important aspect of paper, beyond the lightness and cheapness, is its use as a mean
of interaction between different persons. How many times did we try to explain something
to somebody and in order to better clarify the concepts we used a piece of paper?
Its mobility, the natural usage and the fact that it does not need any kind of power, make
paper nowadays still one of the best way to distribute and access information.

To sum it up, nowadays we are not yet ready to abandon paper. On the other side, it
would be a waste to give up all the new and important features that current developments in
technology provide us with. In fact, it is much simpler to distribute or update a document or
to create many documents from the same template if they are in digital form.

1

2

From these considerations it is easy to see how much one could gain from joining the
paper and digital worlds, creating thus some form of communication and interaction between
them and, at the same time, reducing the gap that still exists between these two realities.
A feasible approach might try to make paper a physical interface to the original digital
document. This would mean making the printed document a way to transpose some actions
from paper to digital documents. The user would interact directly with the printed instance
and the result of its action would automatically be visible in the digital document.

The integration of such a model requires two basic steps. First, one needs to define a
link between the user intentions on paper and the corresponding digital actions. The infor-
mation available on paper should therefore be captured and translated into a digital language.
Moreover, an interpretation of such information should be provided, in order to locate the
digital document or service the user wants to access through paper. The interpretation should
also be advanced enough to allow the interaction with the digital counterpart in a smart
way, for example recognising the elements within the digital document that the user actually
selected on paper.

Beside paper, we could consider other media to the digital document. It should be
possible to link together elements of any type such as web pages, videos, audio tracks, and
so on, creating thus a platform capable of providing cross-media information management.
The Global Information Systems Group [2] at the ETH Zurich developed such a general
Integration Server called iServer [3].
The iServer framework enables cross-media linking based on a set of link management
information concepts. It not only supports links between different kinds of digital media, but
also allows for the integration of physical and digital content. Its architecture is designed
as a platform that can be extended based on a plug-in mechanism. By implementing
media-specific instances of resource components, any new type of media can be integrated.
A plug-in called iPaper [4] has been implemented for the integration of paper and digital
content. Further plug-ins, like the one for XHTML documents, movie clips and sound files
have also been developed. Thanks to the implementation of iPaper, the iServer framework
may therefore be used to allow the interaction between the physical paper world and the
digital one.

At this point the next step would be the creation of such a link based not only on the
physical position of the elements within the document, but also on semantic aspects of the
document’s contents. In order to achieve this objective, it is first required to be able to
link not only the two instances of the document, but also all single elements composing
them. Acquiring semantic information about the single elements of the printed document is
therefore an essential step.

A step forward in this direction has been made by the Global Information Systems
Group, who developed a model capable of combining the metadata coming from both digital
documents (semantic information) and from printed documents (physical information). This
model is the base of the iDoc framework [5], which is used for the publishing of interactive
documents. When a document is printed, the semantic information about the structure and
the content of the document is stored within a database, so that it can be retrieved later. This

CHAPTER 1. INTRODUCTION 3

information would otherwise be lost during the printing process. However, extracting the
semantic information of every existing element of a document would be a massive operation.
The solution of tracking all single elements within a document (e.g. up to characters),
calculating their positions and making them persistent within a database is not a feasible
solution, since it requires an extremely large amount of space and a huge computation time.
A more appropriate approach is to make the operation more dynamic, grouping the small
elements into higher granularity sets (e.g. characters into words or words into paragraphs)
and tracking the sub elements only when they are really needed. This approach will be
extensively described in chapter 3.2 when describing the iDoc framework.

The first phase of this project involves the identification of a generic approach to dy-
namically map a physical position on paper to the digital elements within the original
authoring tool, including all possible semantic information.
The second phase consists in the implementation of a general infrastructure capable of
managing the physical representation on paper of the digital documents. We particularly
focus here on text documents.
The last part includes the deployment of an interactive paper application based on OpenOffice
and its document tracking facilities that exploits the features of the defined infrastructure.
The outlined example has also the purpose of illustrating a real-world use of such an
infrastructure. It proposes a solution for the very common problem of the automatic insertion
of corrections and annotations that a user did on a printed document into the original digital
document. How many times did we write a document with an authoring tool, print it on
paper, read it, correct it and then copy the corrections within the original authoring tool?
This essentially involves the same work twice.

Our interactive tool and the related infrastructure prevent such a redundant work by
building a link between the printed and the digital document and translating the concepts
expressed by the user on paper directly into the corresponding digital document in a
transparent way.

In chapter 2, we analyse two existing applications and highlight theirs weaknesses, in
order to understand the needs that our project tries to satisfy.
Chapter 3 gives an overview of the existing infrastructure, giving a brief description of all
the existing components.
Chapter 4 outlines our vision of the document life-cycle, explaining in details what we are
proposing with this project.
In chapter 5 we describe all the software and hardware tools and the technologies that were
used during this work, providing a brief explanation of the benefits we gained from their use.
Chapter 6 introduces first the design of our system and then provides the reader with some
implementation details.
In chapter 7, we discuss our approach, focussing in particular on the application provided for
its validation: PaperProof.
Chapter 8 highlights the results obtained from the use of PaperProof giving at the same time
some considerations about the presented infrastructure.
Finally, in chapter 9, we present the current weaknesses of the implemented system, along
with new ideas for future improvements and developments.

4

2
Motivation and Related Work

Nowadays there exist several technologies that allow linking printed documents to digital
entities. Probably the most advanced is the Anoto technology [6], which along with a
dedicated printing approach provides a special pen equipped with a camera able to track the
position of the pen with respect to the paper. Moreover, it provides a streaming-mode which
makes it possible to maintain a continuous flow of information between the two worlds.
More on the Anoto technology will follow in chapter 5.3.

The iServer framework [3], which will also be extensively discussed in chapter 3.3,
introduces with its iPaper plug-in an approach based on the Anoto technology and the
concept of “active areas” on paper. This approach allows the definition of regions on a paper
document taking the role of link source on the physical instance of the document. Once
the digital pen is positioned on one of these areas, a request is sent to a server which is
responsible for the activation of the digital target. A typical example of such an approach is
given by the hyperlinks: while reading a document on paper, the user may point on a link
on paper and automatically the link will be activated and the corresponding digital element
displayed on a computer screen.

Until now, however, this approach tends to be one-way, meaning that it is mainly used
to generate interactive paper documents from their digital instance, rather than bearing
bidirectional and continuous transactions between the digital and paper instances of the same
document.
In response of this need, a model was developed, capable of combining the metadata coming
from the paper and digital instances of the same document. The iDoc framework, created for
the authoring and publishing of interactive paper documents, is substantially based on this
model.

Taking into account the authoring process, we realised that in this phase a large amount of
semantic information about the content of the document is available within the authoring tool

5

6

itself. This information is however lost at the moment that the document is sent to a printer
device. Our main purpose is to maintain this semantic information and to store it somewhere
where it is active and accessible even when we are dealing only with the printed instance of
the document. Using this additional information, we are then able to select a single logical
element of the printed document (such as a word) and to retrieve the corresponding digital
counterpart in the source document at a semantic level.

But what does this mean? If, for example, we add an annotation on paper beside a
word, this is linked to the corresponding digital word not thanks to the physical position it
occupies on paper, but by tracking the position that the word has with respect to the paragraph
or section that contains it. Moreover, we are able to access the characters composing the
word as well as the paragraph or the section the word is contained in, allowing a freely
granularity-dependent transition between the different logical elements composing the
document.

This feature is one of the biggest peculiarities which diversify our solution from other
existing projects based on similar technologies.

In the remainder of this chapter we present a short overview of two systems, which
are able to add annotations to a document using a digital pen or a tablet PC.

• ProofRite
ProofRite [7, 8] is a word processor, developed by Conroy, Levin and Guimbretière,
which supports digital and physical document annotation. It is able to merge the
annotations that different users made on the printed instance of a document with the
digital source. As soon as the users are back to the computer, they may continue the
writing process on the digital document. ProofRite is able to reflow the markings
accordingly to the changes made by the users. Furthermore, ProofRite uses a repo-
sitioning algorithm that permits the document’s content to change, allowing users to
modify content and structure while preserving the meaning of annotations.

The main purpose of ProofRite is to automatically transport the user annotations
made on paper into the corresponding digital documents. However, ProofRite does
not actually execute any task based on these annotations. If the user corrects part of
the text on paper, ProofRite transfers the notion that the text needs to be corrected also
in the digital instance of the document, but does not actually correct it nor selects it
within the authoring tool. Indeed, ProofRite does not provide an “auto-correct” or an
“apply annotations” tool which is able to programmatically execute the intentions of
the annotations.

Another weakness of ProofRite is that it tracks the exact position of annotations
on paper and anchor them to the elements (i.e. words) rendered at the same position,
but the created link is based only on the physical position of the annotations and the
anchored elements and not on the semantic meaning that the link is actually carrying.
This means that, if the digital elements change format after printing (for example the
font size gets bigger), the physical positions (x,y) of elements may differ from the ones
recorded at printing time and ProofRite is not able to link the right elements anymore.

CHAPTER 2. MOTIVATION AND RELATED WORK 7

• XLibris
XLibris [9, 10] is a tool presented by Golovchinsky and Denoue which works mostly
on tablet PCs. Here the situation differs with respect to the one highlighted before,
since the user interacts with the system without using a piece of paper but by means
of a tablet PC, however the basic concepts are still similar. XLibris proposes an
annotation system similar to the one of ProofRite, but here the emphasis is put on
the concept of “free-annotations”, which do not have to conform to any structural
constraint. The algorithm behind XLibris is able to preserve the position of the
annotations even when the document is viewed with different font or font sizes, with
different aspect ratios or on different devices. This is possible, thanks to the fact
that each annotation is attached to a location which is independent of the document
pagination. Changes on the document’s content are instead not allowed.

Also this approach, as the one proposed by Conroy et al., bases the insertion of
annotations only on the physical information concerning the position of the annotation
on the “paper-like” display and does not consider any semantic components of the
anchored elements which could provide additional useful information.

Both approaches presented here do not take into account any of the semantic information
provided by the user at authoring time. Once a digital document is printed on paper, it is no
longer possible to directly access the semantic “meaning” of the augmented physical element
in its digital counterpart, nor it is possible to programmatically establish a link between the
printed elements and the original objects within the source document. This lack of seman-
tic information is a relevant weakness of the two highlighted systems. Trying to overcome
this problem by storing also the semantic information available during the authoring phase is
therefore an important aspect that has to be considered in the development of new applica-
tions.

8

3
Existing infrastructure

The existing infrastructure for interactive paper applications (Figure 3.1) is composed of a set
of four main components, which will be explained one by one in details later in this chapter.

display

Printer
DriverDocument DB

iDOC

publish
print data

Semantic Mapper

Content
Analysers

iSERVER

Active Content

Link DB
iPaper Plug-in

publish
positions

(x,y)
coordinates

CMS

Database-driven
Authoring Plug-ins

Application-driven
Authoring Plug-ins

Existing
Documents

iPUBLISH

iPAPER iPaper
Client

print

Printing DB

publish
structure

and content

retrieve
element

MS XPS

retrieve
element

interacting

publishing

PostScript

Figure 3.1: Existing Infrastrucure

The publishing component, called iDoc, enables the mapping between paper and digital in-
stances of a document. This component is tightly bound on one side to the iPublish layer,
which enables a bridge between the authoring of different kinds of documents and their pub-
lishing on paper, and on the other side to the iServer/iPaper framework, which supports in-
teraction with paper documents. Apart from these four components, there exists two other

9

10 3.1. IPUBLISH

important ones: the iGesture framework, for gesture recognition, and the MyScript software,
which provides an Intelligent Character Recognition (ICR) system. They may play an impor-
tant role, especially during the development of applications, as we will see at the end of this
report, when the exemplar application will be explained. Since iGesture and the handwrit-
ing recognition are in relation with interactive paper applications it makes sense to introduce
them in this chapter too, in order to give a complete overview of the used infrastructure.

3.1 iPublish

The iPublish component consists of a series of plug-ins defined for different kinds of docu-
ments. There are three main categories of documents:

• documents automatically generated using data from a database or a content manage-
ment system (CMS)

• existing paginated documents without access to the original source document (e.g.
PDF, PS, etc.)

• documents generated with a classical authoring tool (e.g. OpenOffice, MS Word, etc.)

Depending on which of the three categories we are interested in, iPublish allows us to define
a specific plug-in that tracks structured elements from within the authoring tool, or analyses
existing paginated documents. The basic purpose of the iPublish layer is to identify physical
and semantic information about the document’s contents. Two interesting applications tak-
ing into consideration the first category are the EdFest system [11, 12], an interactive paper
application able to support interaction for users on the move, and a similar application based
on the text book produced by the BBC (British Broadcasting Corporation) for their series on
ocean life, called Blue Planet [13]. For the second category, the Print-n-Link [14] system is a
good example. It uses interactive paper technologies in order to enhance the reading process
of existing printed documents. Users are allowed to access digital information and to search
for cited documents, using only a digital pen for interaction. An example application for the
third category of documents will be proposed in chapter 7, when the PaperProof application
will be explained in details.

3.2 iDoc

The iDoc framework is based on a mixed digital and physical model, which is able to store
metadata about both the digital and paper instances of a document. The model is shown in
Figure 3.2. This mixed model is based on two distinct parts representing metadata coming
from i) logical structures, referred to as digital documents and represented in the upper-right
part of the model, and ii) paginated formats, referred to as physical documents and repre-
sented in the lower-left part of it.
Through the HasPhysicalDescription association the two parts are connected
together, allowing in this way a full mapping between the digital and physical instances of
the same document.

CHAPTER 3. EXISTING INFRASTRUCTURE 11

partition

partition

partition

Contains
Elements

pdf
PDF

Snippets

|HasRevisions|

HasProperties

RepresentedBy

Physical
Documents

Digital
Documents

HasPhysical
description

element

Elements

revision

Revisions

property

Properties

document

Documents

pdl
Page Description

Languages

xps
XPS

Snippets

svg
SVG

Snippets

vgElement
VectorGraphics

Elements

gResource
Graphics

Resources

element
Graphical
Elements

textElement
Text

Elements

mmElement
Multimedia
Elements

ComposedBy

element
Composite
Elements

element
Atomic

Elements

shape

Shapes

ellipse

Ellipses

circle

Circles

polygon

Polygons

rectangle

Rectangles

cShape

ComplexShapes HasShapes

partition partition

(0,*) (1,1)

(1,*) (0,*)

(1,*)
(0,*)

(0,*)

(0,*)
(1,*)

(1,1)(1,1)(1,1)

(0,*)

(2,*)

Figure 3.2: Mixed Digital and Physical Model

If we analyse the model in more detail, we see that we can split it in four basic parts:
the first one dealing with documents, the second one embodying the concept of element, the
third one representing the physical description of an element and the last one handling the
geometric concept of shapes. For each digital document, a Document object is created in
the Documents collection. Since it is possible to update several times the same document,
revisions have also been introduced, in order to allow different contents for the same
document. A new revision is defined each time a new version of the document is printed.
Each revision contains one or more Element objects as defined by the
ContainsElements association. Three types of Element have been defined, de-
pending on the nature of the Element itself: Multimedia, Text and Graphical
elements.
The idea behind the iDoc framework is to have the possibility to refer to the logical
representation of the objects at every level of granularity (e.g. from section up to character
level). This implies that the storage processing of revision’s elements has to be executed in a
smart way, otherwise the amount of data to be transferred and stored into the database would
be huge and this is unacceptable.
For this reason the concept of element has been developed according to a composite design
pattern as shown in Figure 3.3.

(0,*)

(0,*)
(1,*)

partition
(0,*)

element

Elements

element
Composite
Elements

element
Atomic
Elements

ComposedBy

HasProperties

property

Properties

Figure 3.3: Element Model

12 3.2. IDOC

An Element may belong to the AtomicElements collection if it does not contain any
lower-level objects. Otherwise, it is inserted in the CompositeElements collection and
a ComposedBy relation is created for each of its lower-level elements.
Using this approach the elements’ storage is first executed only at high-level granularity,
so that the number of objects that have to be initially stored into the database decreases.
For the storage of elements at lower-level granularity a dynamic approach is taken. Since
the composite pattern creates a hierarchy of Elements (mantaining this way also an
important semantic information), we start from the highest granularity level and we compute
the sub elements (up to the desired granularity) only when they are really needed in a
recursive manner. The sub elements of the current Element object are computed and
inserted into the AtomicElements collection, while the current element is moved into
the CompositeElements collection. At the same time ComposedBy associations
are created for each sub element. This process might be further repeated until the desired
granularity level is reached.

Each Element can be described by a Page Description Language (PDL) snippet. A
PDL is a language that describes the appearance of a printed page, introducing some
additional information such as position coordinates, font size, font name, and others. The
PDLs supported by the model are currently three: PDF [15], XPS [16] and SVG [17], but
the model can be easily extended at any time. A detailed description of three PDLs examples
follows in chapter 5.2.
Once the physical description of the elements has been defined, the
HasPhysicalDescription association has the function of connecting the digital
Element extracted from the document with its physical information stored in the corre-
sponding PDL’s snippet. From the PDL snippet a shape is finally built which contains the
exact physical appearance that the digital element will have on paper. Several types of shape
are defined and a composite pattern is used here in order to model the concept of complex
shapes (Figure 3.2, left side).

The iDoc framework operates during the printing process of the document in strict
collaboration with the corresponding iPublish plug-in. We want now to analyse more in
details the different components used in the iDoc framework, giving a detailed description of
the main parts composing its core (Figure 3.4).

Printer
DriverDocument DB

iDOC

publish
print data

Semantic Mapper

Content
Analysers

Printing DB

publish
structure

and content

Figure 3.4: The iDoc Framework

The main part of the iDoc core is the document database. This database implements the
functionalities needed to support the model explained before. All the logical and physical
metadata needed are stored there, in order to allow a later mapping back from the physical

CHAPTER 3. EXISTING INFRASTRUCTURE 13

instance of the document to its structure defined at the logical level.
Another important part of iDoc is the printing database. It is used to store information
about the printing technology used in the publishing process (e.g. Anoto). Depending on
the printing technology, the printer driver generates the augmented version of the printed
document.
The last component of the framework is the Semantic Mapper. It is responsible for three main
operations. The first one is the insertion of the logical elements into the document database:
this is achieved by the analysis of the document structure identified during the iPublish
phase and the definition of the logical elements. The second operation is the computation
of the position of the different elements and their shapes, based on the information stored
in the PDL snippets. The last operation is the publishing of the elements’ shapes into the
iServer/iPaper framework and the definition of links with the corresponding logical elements
stored in the document database.

3.3 iServer

As already mentioned in chapter 1, iServer enables cross-media linking based on a set of
link management information concepts. Links within the iServer framework are defined as
directed and bidirectional entities, therefore allowing them to have at least one target and one
or more source entities. The simplest kind of entity is a resource, which represents an entire
information unit. In order to be able to control the granularity of link sources and targets,
the concept of selector has been introduced. It allows to address parts of a resource. The
links can be defined also between parts of resources and in order to achieve this a specific
implementation (plug-in) for the resource and selector has to be provided. An example of
such an implementation is the iPaper plug-in, which is broadly explained in the next section.
Figure 3.5 shows a simplified version of the iServer link model and a plug-in example: iPaper.
For a detailed explanation of iServer and the related architecture please refer to [18].

Another important part of iDoc is the printing database. It is used to store information about the
printing technology used in the publishing process. Depending on the printing technology, the
printer driver generates the augmented version of the printed document.
The last component of the framework is the Semantic Mapper. It is responsible for three main
operations. The first one is the insertion of the logical elements into the Document DB: this is
achieved by the analysis of the document structure identified during the iPublish phase and the
definition of the logical elements.
The second operation is the computation of the position of the different elements and their
shapes, based on the information stored in the PDL snippets.
The last operation is the publishing of the elements’ shapes into the iServer/iPaper framework
and the definition of links with the corresponding logical elements stored in the document
database.
A deeper explanation of the iDoc approach along with a practical example follow in the next
section.

‐ iServer
As already mentioned in the Introduction section, iServer enables cross‐media linking based on a
set of link management information concepts. Links within the iServer framework are defined as
directed and bidirectional entities, therefore allowing them to have at least one target and one
or more source entitites. The links can be defined also between parts of resources and in order
to achieve this, a specific implementation (plug‐in) for the resource and selector concepts has to
be provided. An example of such an implementation is the iPaper plug‐in, which is deeply
explained in the next point. Figure X shows a simplified version of the iServer link model and a
plug‐in example: iPaper.

Recently, iServer introduced the concept of “active component”. An active component, which is
basically a piece of code, can be integrated into iServer as source or target of a link. When the
link is visited and selected, the active component gets executed and the program code is loaded,
allowing the active component to become an handler for the information coming, for example,
from a digital anoto pen.

iServer
Links

Resources

Entities

Selectors

iPaper
Shapes Pages

Source Target

Figure 3.5: iPaper Plug-In

Recently, iServer introduced the concept of active component. An active component, which
is basically a piece of code, can be integrated into iServer as source or target of a link. For

14 3.4. IPAPER

example, when a link is visited and selected, an active component may be executed and the
program code in it is loaded, allowing the active component to become a handler for the
information coming, for example, from a digital pen like the one based on Anoto technology.
A very interesting feature of the active components is their reusability. They can be reused
across different applications and each new implementation of an active component makes
the existing pool bigger. The designer of new interactive applications can access this pool,
allowing the creation phase to get much faster and reducing at the same time the efforts of the
application’s developer team.

3.4 iPaper

The base unit for linking paper documents is a page. According to Figure 3.5, a resource
is represented by a single page and a selector is an active area defined by a shape within
that page. iServer links can be defined from an active area of the page to any other iServer
resource. Each time a user points to a position (x,y) within an active area, the iPaper plug-in
resolves the selected shape and its associated links will be activated. In order to resolve the
right shape, the iPaper plug-in needs three inputs: the document identifier, a page number and
the (x,y) position where the user is pointing to. This information is general enough to avoid
that iPaper depends on a specific pen technology.
iServer does not store a digital version of the document within its framework, it only stores
some metadata about the printed document, such as dimension and number of pages, in the
form of a digital document model. This information is used by iPaper to exactly understand
which shape the user is interested in and consequently which link has to be activated by
iServer.

3.5 iGesture

iGesture [19] is a Java-based gesture recognition framework which is implemented following
the principles of extendibility and cross-application reusability. The framework is designed
to be extendable for the integration of new functionalities and for the fulfilling of any needs
or new requirements. The iGesture framework is used in order to interpret the user’s inten-
tions. Thanks to its functionalities, it is possible to understand from the gestures that users do
with the digital pen, which are the purposes they want to achieve. In collaboration with the
Intelligent Character Recognition explained in the next section, iGesture is the entry point for
users’ inputs.

3.6 Intelligent Character Recognition

The MyScript Intelligent Character Recognition (ICR) algorithm [20] is currently part of
the existing infrastructure and is designed to recognise writing captured by a digital pen, a
writing capture device or a graphics tablet. The main difference between the ICR method
and the most known OCR (Optical Character Recognition) method, is that the first one bases
the text recognition on how the text was written (e.g. speed, sequence of strokes, etc.), while
the second works with bitmap images from scanned documents. Therefore, in addition to

CHAPTER 3. EXISTING INFRASTRUCTURE 15

iGesture, which interprets the actions that users want to perform, the ICR algorithm allows
the existing infrastructure to be able to deal also with textual inputs.

16 3.6. INTELLIGENT CHARACTER RECOGNITION

4
Document Life-Cycle

In the previous chapters we introduced the iDoc framework as a tool to build a continuous
and bidirectional mapping between the physical and digital instance of a document.
Analysing the life-cycle of a document within the iDoc framework we can identify five essen-
tial concepts that form a logical and cyclic workflow that starts and ends with the authoring
tool (Figure 4.1).

Authoring tool

Dynamic retrieval of elements
from the original digital

document
Semantic analysis of
the digital document

Storage of highest granularity
level elements Annotation process

Figure 4.1: The Document Workflow

The workflow starts with the creation of a digital document within a standard authoring tool
(e.g. OpenOffice, Microsoft Word, ...). When the user is satisfied by the work and the docu-
ment is sent to the printer, the printing job is captured by the iPublish plug-in.
The iPublish plug-in performs a semantic analysis on the document contents based on

17

18

Digital Document

analyse
logical structure

identify
high-level objects
 (e.g. paragraphs)

tag identified
objects

create physical
document (PDL)

Physical Document

create elements

classify elements
(e.g. text, graphical)

extract position
and layout

extract PDL
snippets for

tagged objects

associate PDLs
with elements

define shapes

Authoring Plug-in

Digital DocumentPhysical Document

store shapes define links with the
logical element

Semantic Mapper

iServer/iPaper

Printer Driver

retrieve
available
patterns

augment
document

print
document

store used
pattern

START

END

Figure 4.2: The Publishing Process

the document tree stored within the authoring tool and extracts the high-level elements
(i.e. sections or paragraphs). Afterwards the digital document is transformed into a
physical document with the help of a Page Description Language (e.g. PDF, XPS, or
SVG), enriched with the semantic information extracted in the previous phase. This pro-
cess is defined as the PDL’s annotation process and is depicted in the upper part of Figure 4.2.

The annotated PDL is then forwarded to the iDoc component which splits the remain-
ing process in two tasks. In one task, a copy of the PDL is sent to the printer driver which
retrieves information about the augmenting technology to be used from the printing database
and prints the augmented version of the document. In the other, a second copy of the PDL is
sent to the Semantic Mapper, which parses the PDL file in order to identify the newly defined
elements. The PDL snippets of the new elements are stored into the document database, and
for each of the snippets a logical element is created and inserted into the database as well.
At the end a link between the elements and the corresponding snippets is provided, by the
HasPhysicalDescription association, as described in the model of Figure 3.2. The
Semantic Mapper and its tasks are shown in the mid-part of Figure 4.2.

After that, the Semantic Mapper computes the positions and shapes of the logical el-
ements using the physical information stored in the PDL snippets and publishes this
information to the iServer/iPaper framework. For each element, a link between its physical
position on paper and its digital counterpart is created and added to the iServer database
(Figure 4.2, lower part).

CHAPTER 4. DOCUMENT LIFE-CYCLE 19

Within text-based documents, the lowest granularity level is the character. Since the
storage of every character of a document is obviously not an optimal strategy due to the large
storage requirements and the time needed for such a computation, our system computes the
character shapes and positions only when they are actually needed: thus the system offers a
dynamic storage of elements, that refines the granularity of the stored semantic information
on a per-request basis, by splitting coarse elements into sub elements and performing a more
in-depth analysis only when this is required. The concept of sub elements is modeled as
explained in chapter 3.2, according to a composite design pattern.

After publishing a document we have to retrieve the digital elements from the original
digital file by means of the physical description of the document. This is the fifth stage
of the iDoc workflow. Let us consider a practical example. If a user highlights a word
on paper with a digital pen, the iServer/iPaper framework forwards the information about
the document, the page and the position of the highlighted object to the Semantic Mapper,
which looks for the word within the document database. If the word has not yet been stored
within the database, the Semantic Mapper retrieves the corresponding paragraph element
(the element with higher granularity which contains the position highlighted by the user) and
splits it into its sub elements, according to the content of the paragraph’s PDL snippet. For
each sub element, the position and shapes are computed and inserted into the system. At this
point the search of the desired word within the digital document may start and the authoring
tool’s plug-in is called with the physical word position as a parameter. The plug-in identifies
the word within the document and highlights it, thus closing the circle.

The framework and the concepts highlighted in this chapter enable the construction of
a reliable bridge between the two worlds, physical and digital, in which a document can
exists, giving to the users the freedom to perform the same type of operations on a document
no matter whether they work on a printout of it or directly on the screen.
In the remainder of this report we will look at how this may be practically achieved explain-
ing first some of the technologies used, in chapter 5, then the design and implementation
of our system in chapter 6, validating finally our approach with an exemplar application,
PaperProof, in chapter 7.

20

5
Technologies

In this chapter we introduce the software and hardware tools and some technologies that were
used for this work.

5.1 OpenOffice and OpenOffice SDK

OpenOffice [21] is one of the best open-source office suite available today. It is developed by
Sun Microsystems [22] and is available for many different operating systems, although the
primary development platforms for OpenOffice are Linux, Microsoft Windows and Solaris.
OpenOffice has been implemented according to the OpenDocument standard [23] for data
interchange and is available under the GNU Lesser General Public License (LGPL) [24].
The OpenDocument standard (ODF) is a XML-based document file format for electronic
office documents. It is used for documents containing text, spreadsheets, chart and graphical
elements. Since it is an open format, new applications can be freely implemented to read and
write this kind of documents.

OpenOffice is a collection of several applications that provide all the features expected
from a modern office suite (as, for instance, Microsoft Office [25]):

• Writer: a word processor similar to Microsoft Word [26] that offers a comparable set
of functions and tools.

• Calc: a spreadsheet similar in concepts and features to Microsoft Excel [27].

• Impress: a presentation program similar to Microsoft PowerPoint [28]. It makes it
possible to export the presentation’s slides to Adobe Flash [29].

• Base: a database program similar to Microsoft Access [30].

• Draw: a vector graphics editor comparable in features to Corel Draw [31] or, in lesser
measure, to Microsoft Publisher [32].

21

22 5.2. PAGE DESCRIPTION LANGUAGES

• Math: A tool for creating and editing mathematical formulae, in analogy to the Mi-
crosoft Equation Editor.

• QuickStarter: A small executable provided for Windows and Linux that is launched
when the computer starts and loads the OpenOffice core files and libraries to allow for
a faster start of the suite applications.

• The macro recorder: An useful application able to record user actions and replay
them to automatise repetitive tasks.

Most of the OpenOffice applications also include the ability to export Portable Document
Format (PDF) files (see below) without the need of additional tools. Another interesting as-
pect is that the OpenOffice applications are able to read the files created by the corresponding
programs of the Microsoft Office suite.

Along with the office suite, Sun Microsystem provides the user with a Software De-
velopment Kit (SDK) [33], that covers all the applications of the suite. The SDK supports
two programming languages: Java and C++. In this context, the choice of the OpenOf-
fice.org’s SDK was motivated by the fact that most of the existing infrastructure for
interactive paper applications was indeed implemented in Java.
Besides providing programmatic access to every feature a user can execute within the
OpenOffice user interface, the SDK allows the implementation of custom plug-ins which can
then be imported as part of the suite itself.

5.2 Page Description Languages

A “print-ready” format is a description language that describes the physical appearance of
a document as precisely as possible. The first and most intuitive usage of such a language
was to drive the printing process, but nowadays with the design and development of new
description languages, some other features have been added to the concept of print ready
formats.

We will now look at two Page Description Languages (PDL) which made the history
of PDLs, the oldest one, the PostScript language (PS) [34] and the today’s most used
Portable Document Format (PDF) [15]. We will then have an outlook inside a new very
promising PDL from Microsoft: the XML Paper Specification (XPS) format [16].

5.2.1 PostScript

PostScript is a PDL, but also a programming language designed to do just one thing: describe
in an accurate way the final appearance of a (printed) page.
Every programming language needs a processor to run or execute its code. In the case
of PostScript, this processor is a combination of software and hardware which typically
resides in a printer. Such a processor is called a Raster Image Processor (RIP). A RIP takes
PostScript code as input parameter and renders it as rasterised image.
The PS programming language is an interpreted, stack-based language with strong dynamic
typing, data structures and, in the newest versions, garbage collector.

CHAPTER 5. TECHNOLOGIES 23

PostScript syntax

The syntax of the PS language uses reverse Polish notation [35], as a consequence of
the fact that it is a stack-based language.
As an example of this notation, let us look at the following arithmetical expression:

7 5 sub 2 9 add mul

This has the same meaning as:

(7 - 5) * (2 + 9).

In order to produce graphics, PS uses a similar syntax and a Cartesian coordinate system with
origin at lower-left of the page. The following example positions the output tool at the point
with coordinates (200, 200) and then draws a line from that point to the point with coordinates
(350, 425):

200 200 moveto 350 425 lineto stroke.

A deeper discussion of the technical features of the PS is beyond the scope of this chapter,
however it is interesting to know that the PostScript language along with its RIP interpreter
is still the most used language in the area of professional high-end digital imaging, but will
probably be supplanted in the future by one of its own descendants: the PDF, that we will
discuss next.

5.2.2 Portable Document Format

PDF is an open standard and platform-independent file format. Additional than being one of
the most used file format for storing, sharing and distributing digital documents, PDF is also
a page description language. Built largely on the PostScript language, PDF has taken the
PS-approach a step further. Besides describing the layout of a page, the PDF format can also
store images, interactive hyperlinks, keywords for searching and indexing, fonts, and so on.

A PDF file is essentially a PostScript file that has already been interpreted by a RIP
processor. It basically combines three technologies:

• A sub-set of the PS page description programming language, for generating the layout
and graphics (some flow control commands such as if and loop have been removed,
while graphics commands such as lineto have been maintained).

• A font embedding system to allow fonts to be kept together with the document itself.

• A storage system, which is able to structure all the document’s elements into a single
file, with data compression where possible.

The content of a PDF file is described by means of content streams. A PDF content stream
contains a sequence of instructions used to describe the appearance of text and graphical
entities.

24 5.2. PAGE DESCRIPTION LANGUAGES

Graphical objects in the PDF format fall in one of four classes:

• Path object: represents an arbitrary shape.

• External object (XObject): represents a graphical object defined outside the content
stream.

• Inline image object: represents a small raw image directly stored within the content
stream, by means of a special syntax.

• Shading object: represents a shape whose color varies according to a shading function.

For text, a unique object is provided. It is composed by one or more characters referencing a
sequence of glyphs. There is a clear separation between the concepts of character and glyph.
The first one is an abstract symbol, while the second is a specific graphical rendering of the
first. Glyphs are stored into fonts, which can be considered vocabularies defining glyphs for
a particular character set: as an example, the Times font defines glyphs for a set of standard
Latin characters.

Figure 5.1 shows a glyph for the character ‘f’. The grey box is the smallest rectangle
that can enclose the glyph shape. The rendering position of a glyph depends on the position
of the previous rendered glyph. In fact, the origin of the first glyph of a line sets the position
(0, 0) where the glyph will be drawn. The origin of the following glyphs is the origin of the
previous glyph shifted by the Advance width of the same glyph (see Figure 5.1).

 Inline image object: represents a small image directly stored within the content
stream, by means of a special syntax.

 Shading object: represents a shape whose color varies according to a shading

function.

For text, a unique object is provided. It is composed by one or more characters referencing a
sequence of glyphs. (Please notice that there is a clear separation between the concepts of
character and glyph. The first one is an abstract symbol, while the second is a specific
graphical rendering of the first.)
Glyphs are stored into fonts, which can be considered vocabularies defining glyphs for a
particular character set: as an example, the Times fonts define glyphs for a set of standard
Latin characters.

Figure X shows a glyph for the character ‘f’. The black box is the smallest rectangle that can
enclose the glyph shape.
The rendering position of a glyph depends on the position of the previous rendered glyph. In
fact, the origin of the first glyph of a line sets the position (0, 0) where the glyph will be
drawn. The origin of the following glyphs is the origin of the previous glyph shifted by the
advance width of the same glyph (see Figure X).

o Xml Paper Specification

Xml Paper Specification (XPS) is the newest page description language format proposed
by Microsoft Corporation. This format represents a set of pages with a fixed layout,
which are parts of one or more documents. A file that implements this format is a
simple zip archive with extension .xps. It includes everything (i.e. fonts and images,
collectively referred to as resources) necessary for rendering documents on a display
device or on a physical medium (e.g. paper).

Figure 5.1: Glyph

5.2.3 XML Paper Specification

The Xml Paper Specification (XPS) is the newest page description language format proposed
by Microsoft [16]. This format represents a set of pages with a fixed layout, which are
parts of one or more documents. A file that implements this format is a simple zip archive
with extension .xps. It includes everything (i.e. fonts and images, collectively referred to as

CHAPTER 5. TECHNOLOGIES 25

<Glyphs
Fill="#ffff0000" FontRenderingEmSize="16.0006"
FontUri="/Documents/1/Resources/Fonts/493B8DF4‐19BD‐4088‐A175‐03717D006BB3.odttf"
Indices="36,73;79,27;69;72,45;85;87;3;40;76;81;86;87;72;76;81" OriginX="123.04" OriginY="164.16"
StyleSimulations="None" UnicodeString="Albert Einstein" />

Output: Albert Einstein

<Path
Data="F0 M 118.72,108.64 L 209.6,108.64 209.6,224.16 118.72,224.16 118.72,108.64 z”
Fill="#ff99ccff" />

<Path
Data="F1 M 164.16,224.16 L 118.72,224.16 118.72,108.64 209.6,108.64 209.6,224.16 164.16,224.16"
Stroke="#ff000000“
StrokeThickness="0.32“
StrokeLineJoin="Round“
StrokeStartLineCap="Round“
StrokeEndLineCap="Round" />

Output:

Figure 5.2: The XML Representation of a Glyphs node

resources) necessary for rendering documents on a display device or on a physical medium
(e.g. paper).

The content of a single page is expressed as a XML document tree. The XML schema behind
an XPS page is based on an element, FixedPage, defining the width and height of the page
and a list of children:

1) Glyphs: they are used to represent a sequence of uniformly-formatted text from a
single font. Figure 5.2 is an example of a Glyphs node, as it appears in the XPS file.
There are different attributes describing a Glyphs:

• Fill: Describes the brush used to fill the shape of the rendered glyphs. In practice it
represents the color of the text.

• FontRenderingEmSize: Specifies the font size in drawing surface units, expressed as
a float in units of the effective coordinate space1. A value of 0 results in no visible text.

• FontUri: The URI of the physical font from which all glyphs in the run are drawn. The
URI must reference a font contained in the package and thus it is a local reference.

• Indices: Specifies a series of up to 4 glyph indices, used for rendering the glyphs
sequence. The first value is the character index and is used in order to retrieve it whithin
a font file. The second defines where the next character has to be drawn with respect to
the first. The third and fourth values are used to adjust the character position along x-
and y-axis.

• OriginX: Specifies the x coordinate of the first glyph in the run, in units of the effective
coordinate space1.

• OriginY: Specifies the y coordinate of the first glyph in the run, in units of the effective
coordinate space1.

• StyleSimulations: Specifies a style simulation. Valid values are None, ItalicSimula-
tion, BoldSimulation, and BoldItalicSimulation.

• UnicodeString: Contains the string of text rendered by the Glyphs element.
1By default, elements are rendered in a coordinate space with units of 1/96 inches. The effective coordinate

space for a particular element is created by sequentially applying each parent and ancestor element’s affine ma-
trix transformation, specified with the Transform or RenderTransform properties, from outermost to innermost,
including the element’s own affine matrix transformation.

26 5.2. PAGE DESCRIPTION LANGUAGES

<Glyphs
Fill="#ffff0000" FontRenderingEmSize="16.0006"
FontUri="/Documents/1/Resources/Fonts/493B8DF4‐19BD‐4088‐A175‐03717D006BB3.odttf"
Indices="36,73;79,27;69;72,45;85;87;3;40;76;81;86;87;72;76;81" OriginX="123.04" OriginY="164.16"
StyleSimulations="None" UnicodeString="Albert Einstein" />

Output: Albert Einstein

<Path
Data="F0 M 118.72,108.64 L 209.6,108.64 209.6,224.16 118.72,224.16 118.72,108.64 z”
Fill="#ff99ccff" />

<Path
Data="F1 M 164.16,224.16 L 118.72,224.16 118.72,108.64 209.6,108.64 209.6,224.16 164.16,224.16"
Stroke="#ff000000“
StrokeThickness="0.32“
StrokeLineJoin="Round“
StrokeStartLineCap="Round“
StrokeEndLineCap="Round" />

Output:

Figure 5.3: The XML Representation of a Path Node

2) Path: they are the sole means of adding vector graphics and raw images to an XPS page.
Figure 5.3 is an example of a Path node, as it appears in an XPS file.
The meanings of the attributes of the Path node as they are defined in the XPS official speci-
fication are:

• Data: Describes the geometry of the path.

• Fill: Describes the brush used to paint the geometry specified by the Data property of
the path.

• Stroke: Specifies the brush used to draw the stroke.

• StrokeThickness: Specifies the thickness of a stroke, in units of the effective coordi-
nate space1.

• StrokeLineJoin: Specifies how a stroke is drawn at a corner of a path. Valid values are
Miter, Bevel, and Round.

• StrokeStartLineCap: Defines the shape of the beginning of the first dash in a stroke.
Valid values are Flat, Square, Round, and Triangle.

• StrokeEndLineCap: Defines the shape of the end of the last dash in a stroke. Valid
values are Flat, Square, Round, and Triangle.

The highlighted attributes do not cover all the ones defined for Glyphs and Path elements,
but they constitute the most used. For further explanations, please see [16].

3) Canvas: they are used to group together a set of Glyphs or Path nodes. Such a
grouping operation can be used to identify the grouped elements as a unit (for example in
order to identify a hyperlink destination) or to apply a composed property value to each
child of the Canvas node. The original idea of canvas was thus to group elements based on
format similarity rather than semantically.
In addition to page description information, XPS may provide a set of metadata which
enriches the XPS file with semantic information about the contents of the file itself. This

CHAPTER 5. TECHNOLOGIES 27

feature is absolutely unique to the page description languages we analysed so far. Currently,
XPS files can either be created from within the Microsoft Office suite by means of the
dedicated XPS Plug-in creator, or from any application through the XPS virtual printer. Still,
while the XPS Plug-in creator stores all the semantic information associated to the document
in the XPS file, this information is completely absent in files generated with the virtual printer.

XPS was chosen as the PDL to be used within our project for several reasons:

• The images needed by the XPS rendering process are stored directly into the XPS
archive in their original format without the need of extra processing as is the case for a
PDF file. The fonts are also stored inside the XPS archive, however the first time they
are accessed they need to be de-obfuscated in order to be read. We will see in the next
chapter how this process actually takes place.

• The XPS zip package can be extended with custom files or updated with the replace-
ment of existing files. We took advantage of this feature for the insertion of semantic
information into the XPS file: a detailed explanation of this point will follow in chap-
ter 6.

• The XML files describing the content of the XPS file are human readable and can be
easily edited with a simple text editor.

5.3 Anoto

Anoto [6] is one of the pioneering leaders of digital pen and paper technology. In collab-
oration with well-known enterprises like Sony-Ericsson [36], Nokia [37], Logitech [38],
Hewlett-Packard [39] and others, Anoto delivered easy-to-use, digital communication based
on advanced digital techniques that bridge the gap between writing and computing. In the
last year they also began to produce their own Anoto-branded hardware.
There are two important components in the Anoto technology: a digital pen, produced by
the Anoto’s partners mentioned above, and a particular paper technology. This technology
consists of a sheet of ordinary paper on which a proprietary pattern of dots has been printed.
Since the spacing between the dots is of only 0.3 mm, the human eye perceives the pattern as
a slightly off-white surface. An example of the pattern in its original size and magnified 19
times may be seen in Figure 5.4

The digital pens are equipped with a micro camera which captures snapshots of the dotted
pattern. Light is emitted by a built-in infrared (IR) LED, reflected by the paper surface and
captured by the camera. Since the Anoto dot pattern is printed with IR-absorbing black toner,
the dots absorb the infrared light and the pattern will appear as white dots on the captured
camera images. If the amount of black toner particles used in the printed document exceeds
a certain limit, the printing will interfere with the pattern and the camera is no longer able to
detect the dots on paper. This means that no black colour should be used in areas that are to
be interactive.

Thanks to this technology, a record of the movements of the pen can be used to recre-
ate in the digital world what the user has written on paper. Figure 5.5 shows the features

28 5.3. ANOTO

Figure 5.4: Anoto Pattern

of an Anoto enabled-pen. Beside the infrared camera cited above, the pen provides also
a processor, able to elaborate the inputs coming from the camera, a memory slot where
information are stored in the case the pen is used in batch mode and a rechargeable battery
which enables to use the pen wherever you want.
Thanks to the Bluetooth transceiver (which is not mandatory), some digital pens have the
potential to be used for direct interaction: indeed, they are able to transmit the position infor-
mation continuously (in streaming-mode) and not only in batch mode.

CHAPTER 5. TECHNOLOGIES 29

Figure 5.5: Anoto-Enabled Pen

30 5.3. ANOTO

6
Design and Implementation

As thoroughly discussed in the previous chapters, this project aims at delivering tools for
bridging the gap between the physical and digital instances of a document. In terms of
applications we particularly focus in the retrieval of elements marked on a printed instance
within the digital document. Many of the existing tools already allow for the interaction
between paper and digital elements, but they do not currently support access to the semantic
information associated to the document, limiting their interest to the physical information
that they retrieve from paper.

The goal of this work is to extend the capabilities of the existing tools, making use
also of the semantic information associated to the document. Given a position on paper
and depending on the level of granularity, there are several elements that can be retrieved
within the digital document (e.g. words, characters). The semantic information augments
the physical information by allowing the navigation from a single element to all the elements
semantically connected to it, without making use of any additional physical information
coming from paper.
According to the existing infrastructure, the project has been divided into three main
sections: (i) the implementation of an iPublish plug-in for OpenOffice, (ii) the design and
implementation of an iDoc extension that uses XPS files to retrieve elements in the original
digital document, and (iii) the creation of an exemplar application that exploits the benefits
of the implemented code.

iPublish plug-in

Thanks to the OpenOffice SDK [33] it is possible to get programmatic access to all
the features provided by OpenOffice. The choice of OpenOffice as authoring tool prevented
us to use the Microsoft Office plug-in for the creation of the XPS files. As discussed in the
previous chapter, this means that we completely lacked the semantic information about the
document’s contents. In order to store such information, we introduced the concept of an

31

32

Highlighter

 initialization()

 printOOToXps()

Highlighter

GraphicHighlighter

 highlightGraphicsSection()

initialization()

GraphicHighlighter

TextHighlighter

 highlightParagraphs()

 initialization()

TextHighlighter

SectionHighlighter

 analyzeSectionForGraphics()

 analyzeSectionForParagraphs()

 analyzeSectionForTables()

 highlightsSections()

 initialization()

SectionHighlighter

TableHighlighter

 highlightTables()

 initialization()

TableHighlighter

Figure 6.1: Highlighter Hierarchy

Highlighter. The idea behind the Highlighter is to use shapes as semantic containers and
draw them within the OpenOffice document along with an ID string which labels them.
There are several types of Highlighter, depending on the semantic element they have to
enclose (e.g. Section, Table, Graphic and Text). In practice once the structural elements
(sections, paragraphs, etc.) have been retrieved from the document tree, their representation
is “highlighted”. Once the highlighting process is completed the document is printed to an
XPS file. This allows the extraction of physical information about the shapes themselves,
meaning that it is therefore possible to define a physical shape for the semantic elements of
the digital file.

The Highlighting process was implemented by means of an abstract class Highlighter
that is responsible first for the activation of the connection with the OpenOffice instance
and later for the printing of the document to an XPS file. To highlight the differ-
ent elements, different highlighters have been developed: SectionHighlighter,
TableHighlighter, GraphicHighlighter and TextHighlighter. These spe-
cific Highlighters provide an implementation of the abstract method initialization()
declared within the Highlighter base class and additional specific methods for the
execution of the highlighting process. Figure 6.1 outlines the UML schema of the
highlighters.
In order to better understand the concept of the highlighters, Figure 6.2 shows the result of the
execution of the highlightParagraphs() method within the TextHighlighter
class. Each paragraph of a section has been enclosed by a polygon responsible of “bundling
together” all the words that are contained within the same paragraph. For completeness of

CHAPTER 6. DESIGN AND IMPLEMENTATION 33

Figure 6.2: A Highlighted OpenOffice Document

information, we mention that the drawing operation was wrapped by means of the Drawing
class, which allows for the insertion of rectangular and polygonal shapes. In the next section
we will look at how this enclosing shape is used for extracting semantic information.
At the end of the semantic enrichment (“highlighting”) the OpenOffice document is finally
printed by means of the Microsoft XPS virtual printer and a XPS file is generated.

iDoc extension

There are two main components in the iDoc extension: the SnippetExtractor and the
Semantic Mapper. Given an highlighted XPS file, the SnippetExtractor is responsible for
tracking all the highlighting shapes, extract physical information about their position and
annotate the XPS content with semantic information. The SnippetExtractor works on the
following semantic levels: Section, Paragraph, Table and Graphic. The process workflow is
summarised next:

1. Create an empty references.xml file inside the XPS archive.

2. For each highlighted shape, create a corresponding XML node (Section,
Paragraph, Table or Graphic node) into the references.xml file and add a child
element Shape containing an XML description of the surface occupied by the shape.

3. For each Glyphs and Path node of the XPS file, extract the physical information and
check if they reside within a highlighted shape. In the case of a Canvas node, extract
its children and do not consider the enclosing canvas anymore.

4. For every Glyphs and Path node which reside within the highlighted shape, create
an XInclude node as sub element of the node representing the highlighted shape.

34

The XInclude node follows the XInclude W3C, Version 1.0, recommendations [40]. Basically
it is a link to an external XML element which is part of another XML document. In order
to retrieve the element within the source document XPath expressions are used. Using such
an approach, it is possible to reduce the amount of duplicated information within the XPS
document, since the original XML nodes are not replicated in the references.xml file, but only
linked. This approach needs the usage of particular XML parsers able to support this linking
system. There exist several ones which are advanced enough to support this functionality.
Among them, we chose the Xerces parser, version 2.9.0 [41].
If the OpenOffice document contains sections, the outlined process is run twice. Once for
annotating the sections and the second time for annotating tables, graphics and paragraphs,
enabling this way a double level of hierarchy, as shown in Figure 6.3.

 <Section ID="iDocRes:Sec:9603a909‐66b7‐419c‐ae3c‐4038762161d2"
PageNr="1" SecName="Introduction" SecRelIndex="1">

 <xi:include href="1.fpage" parse="xml" xpointer="element(/1/2)" />
 <xi:include href="1.fpage" parse="xml" xpointer="element(/1/3)" />
 <xi:include href="1.fpage" parse="xml" xpointer="element(/1/4)" />
 <xi:include href="1.fpage" parse="xml" xpointer="element(/1/5)" />
 <xi:include href="1.fpage" parse="xml" xpointer="element(/1/6)" />
 <xi:include href="1.fpage" parse="xml" xpointer="element(/1/7)" />
 <xi:include href="1.fpage" parse="xml" xpointer="element(/1/8)" />
 <Shape>
 <Rect>

<UpperLeft>
<Point>

 <X>72.96</X>
 <Y>140.0</Y>

 </Point>
 </UpperLeft>

<Size>
<Width>648.0</Width>
<Height>146.88</Height>

 </Size>
 </Rect>
 </Shape>
</Section>

a)

 <Section ID="iDocRes:Sec:9603a909‐66b7‐419c‐ae3c‐4038762161d2"
 <PageNr="1" SecName="Introduction" SecRelIndex="1">
 <Paragraph ID="iDocRes:Par:ef39a647‐bb44‐45c0‐bd81‐7c42adcdd2fd"
 LogicalParent="iDocRes:Sec:9603a909‐66b7‐419c‐ae3c‐4038762161d2"
 PageNr="1" RelativePosition="1" SecRelIndex="1">

 <xi:include href="1.fpage" parse="xml" xpointer="element(/1/2)" />
 <xi:include href="1.fpage" parse="xml" xpointer="element(/1/3)" />

<Shape>
<Polygon>

<Point>
 <X>74.4</X>
 <Y>160.0</Y>

 </Point>
<Point>

<X>74.4</X>
<Y>144.0</Y>

 </Point>
 …

</Polygon>
 </Shape>
 </Paragraph>
 …

 <Shape>
<Rect>

<UpperLeft>
<Point>

 <X>72.96</X>
<Y>140.0</Y>

</Point>
</UpperLeft>
<Size>

<Width>648.0</Width>
<Height>146.88</Height>

</Size>
</Rect>

 </Shape>
</Section>

b)

Figure 6.3: a) Section and b) Paragraph Nodes

The ID attribute is a unique identifier for all structural elements. The PageNr attribute
represents the page where the element begins, SecName is a specific Section attribute and
contains its name as specified within the authoring tool, while SecRelIndex is an index
used in the case that a section is splitted on more than one page. In this case more highlighting
shapes are drawn for the same section. They have all the same ID and the index is used in
order to keep them in the right sequence once the addition of paragraph, table and graphic
children is performed.
The Paragraph node shows two more attributes, the LogicalParent, which contains
the ID of the Section enclosing it, and the RelativePosition, which defines the position
of the Paragraph with respect to the parent.

CHAPTER 6. DESIGN AND IMPLEMENTATION 35

The second main component of the iDoc extension is the Semantic Mapper. We defined all
the relevant semantic elements as Java classes that extend a base class Element. This class
contains all the basic fields and methods common to all the element types. Figure 6.4 shows
the UML representation of the Element class and its subclasses.

 Glyphs()

 getElements()

 getFontUri()

 getIndices()

 getShape()

Glyphs

 Paragraph()

 updateDatabase()

 publish()

getElements()

 getGlyphs()

getPageNumber()

 getOriginX()

 getOriginY()

 getUnicodeString()

 getFontsUri()

Paragraph

 Character()

getElements()

 getFontUri()

 getIndices()

 getEndX()

 getEndY()

 getShape()

Character

 Table()

 updateDatabase()

 getPageNumber()

 getOriginX()

 getOriginY()

 getElements()

 getUnicodeString()

 getFontsUri()

Table

 Section()

 publish()

 analyze()

 updateXmlRepresentation()

 getSectionName()

 getPageNumber()

 getOriginX()

 getOriginY()

 getElements()

 getUnicodeString()

 getFontsUri()

Section

 Word()

 getIndices()

 getElements()

 getFontUri()

 getEndX()

 getEndY()

 getShape()

Word

 Element()

 getXmlRepresentation()

 setXmlRepresentation()

 getElements()

 publish()

 getID()

 getParentID()

 getPosition()

 setPosition()

 getNumberOfElements()

 getElementName()

 getOriginX()

 getOriginY()

 getUnicodeString()

 setUnicodeString()

 getXmlShape()

 getShape()

Element

 Graphic()

 updateDatabase()

getElements()

getPageNumber()

 getFontUri()

 getIndices()

Graphic

Figure 6.4: Elements Hierarchy

Semantically, these elements build a hierarchical structure. The interaction is ensured by the
method getElements() which computes the Elements composing the current element
and stores them in a vector of sub elements, as shown in Figure 6.5.

36

The implementation of getElements() differs among the different classes. In the
case of a section, getElements() first calls the iPublish plug-in in order to highlight the
elements contained within the section itself. The document is printed and the XPS file is
generated. Then the XPS file is parsed, the XML representations of the sub elements are
retrieved and the corresponding Java objects are created.

Section

getElements()

Paragraph
Paragraph

getElements()

getElements()

getElements()Graphic
Table
Paragraph

Glyphs
Glyphs
Glyphs

Word
Word

getElements()

Paragraph
Table
Picture

Glyphs
Glyphs
…

Word
Word
Word Character

h

getElements()

… … Character
Character
Character
…

Figure 6.5: The Sub Elements

For graphical objects, the getElements() method does not make sense, since an image
does not contain any further element other than the image itself. This practically means that
its implementation is empty. For tables, the implementation is currently missing. This means
that we currently get the object Table containing the Path and Glyphs elements from
the section’s getElements() method, but we are currently not able to analyse it further.
For Paragraphs elements, getElements() returns a list of Words. To be precise,
the method first creates Glyphs objects according to the <Glyphs> nodes contained in
the XML representation of the paragraph within the XPS file, and then for each of these
Glyphs, a further call to the corresponding getElements() method is executed. This
two-step operation is necessary since the Glyphs objects do not have a semantic meaning,
but they just represent a run of uniformly-formatted text from a single font, and nothing more.
The sub elements of a Paragraph are hence the words composing it.
The UML diagram of Figure 6.4 shows methods available within the Element class. Most of
them are just getter and setter methods, which parse the XML representation of the element it-
self and return or set the corresponding values. The implementing sub classes provide specific
implementation of some of these methods in the case that they need a particular behaviour
which differs from the general one. The other important method, beside getElements(),
is getShape(). This method computes the shape of the current element and stores it as a
Shape object, following the same convention as within the iServer framework.

CHAPTER 6. DESIGN AND IMPLEMENTATION 37

<Glyphs
Fill="#ffff0000" FontRenderingEmSize="16.0006"
FontUri="/Documents/1/Resources/Fonts/493B8DF4‐19BD‐4088‐A175‐03717D006BB3.odttf"
Indices="36,73;79,27;69;72,45;85;87;3;40;76;81;86;87;72;76;81" OriginX="123.04" OriginY="164.16"
StyleSimulations="None" UnicodeString="Albert Einstein" />

Output: Albert Einstein

<Path
Data="F0 M 118.72,108.64 L 209.6,108.64 209.6,224.16 118.72,224.16 118.72,108.64 z”
Fill="#ff99ccff" />

<Path
Data="F1 M 164.16,224.16 L 118.72,224.16 118.72,108.64 209.6,108.64 209.6,224.16 164.16,224.16"
Stroke="#ff000000“
StrokeThickness="0.32“
StrokeLineJoin="Round“
StrokeStartLineCap="Round“
StrokeEndLineCap="Round" />

Output:

Figure 6.6: The XML Representation of a Glyphs node

In order to compute the position and the shape of the words of a paragraph, several operations
have to be computed. Let us start by analysing how the information is stored within the
Glyphs nodes composing the XML representation of a Paragraph object. For a better
understanding the Glyphs structure already outlined in chapter 5 is proposed once again in
Figure 6.6.
The node stores the physical coordinates of the beginning of the Glyphs, defined as
OriginX and OriginY, the URI of the font used to render the text, the content of the
Glyphs as UnicodeString, and a list of Indices. For each character composing the
Glyphs, a list of up to four comma-separated parameters is stored in the Indices attribute.
A semi-colon represents the separation of the single characters, indicating that the following
attributes are now referring to the next character. The first value contains the index of the
character, useful for retrieving it within a font file. The second index expresses the advance
width of the character, which defines where the next character has to be drawn with respect to
the current one. By using the advance width values and starting from the first character, it is
therefore possible to compute the x position of each following character. The third and fourth
indices allow the adjustment of the character position along the x- and y-axis respectively.

If the advance width is not specified in the Indices list, this information has to be ex-
tracted from the font file specified by the FontUri path. However, the XPS generation
process encrypts the first 32 bytes of the font data in order to prevent misappropriation of
the embedded fonts. This obfuscation mechanism prevents users from using standard ZIP
utilities to extract fonts from the XPS files and install them on their system. In order to
open and access font data, a decryption of the font has to be executed and a specific key is
needed for every font. The key needed for this operation can be obtained directly from the
font name. Indeed, a font is stored within an XPS document with a 128-bit number string.
Considering each byte of the 128 bit as a single element represented as two hexadecimal
digits, the name of the font can be viewed as a list of 16 single elements. The key is then
simply the inverse of the list, starting from the last element and adding each time the previous
one. A XOR operation between the key and the first 32 bytes of the obfuscated font leads
to an un-obfuscated file, which can be freely accessed. Figure 6.7 shows a summary of the
deobfuscation process.
Once the font has been deobfuscated, the advance width can be read and the position of
the next character computed. Using the same information, it is obviously also possible to
compute the position of each word, considering the blank spaces of the UnicodeString
as stop points.

38

• First 32 bytes of the font are obfuscated…
H t t th k f th d bf ti ?• How to get the key for the deobfuscation?

Obfuscated font name:
0AEEC481‐EF36‐4152‐B415‐740AF524F0EE.odttf

0A | EE| C4| 81| EF | 36 | 41 | 52 | B4 | 15 | 74 | 0A | F5 | 24 | F0 | EE

EE | F0| 24| F5| 0A | 74 | 15 | B4 | 52 | 41 | 36 | EF | 81 | C4 | EE | 0A

• Byte-wise xor (first 32 bytes, key)

Key:

DeobfuscationByte wise xor (first 32 bytes, key)

.odttf .ttf

Figure 6.7: Deobfuscation Process

The computation of the origin X of a character is obtained with the formula shown in
Equation 6.1:

X = Origin of the character
pC = The previous character
pX = The OriginX of the previous character
pAW = The AdvanceWidth of the previous character
pFRES = The FontRenderingEmSize of the previous character

X = pX + ∆(pAW) (6.1)

where ∆ is defined as follows if pAW is known:

∆(pAW) = 0.01 ∗ pFRES ∗ pAW (6.2)

or as follows if pAW is not yet known:

∆(pC) = 0.01 ∗ pFRES ∗ font.getWidth(pC) ∗ 0.1 (6.3)

At this point, we need one more piece of information to fully characterise the shape
containing characters and words: the height of the shape itself. This value depends on the
height of the characters within the words, and again this has to be extracted from the font
file. In the case of a word (that contains several characters), the maximal height among all
characters is chosen.

Many technologies exist for the extraction of information from a font file. We de-
cided to use iText [42], an open source Java library created to generate PDF on the fly. Even
if we were not interested in the creation of PDF, this library provides a simple interface for
accessing all the common information about single characters in a font file.

CHAPTER 6. DESIGN AND IMPLEMENTATION 39

From paper back to digital

Two operations provide the link to the digital instance of the printed document en-
abling the retrieval of elements from the repository, and storing the newly analysed elements
in the case that a further analysis is needed. These operations are currently implemented in
two main classes, XPSElementFinder and ReferencesPublisher, that perform the
retrieval and publishing of elements from and to an XPS repository. These classes implement
the abstract findElements() and publish() methods declared in the base abstract
classes ElementFinder and Publisher, respectively. These abstract classes have been
introduced in order to enable the addition of finding and publishing operations in the case
that repositories different from XPS will be used. In the near future, for example, the XPS
repository will be substituted by the iDoc document database mentioned in chapter 3.2. In
this case, after the highlighting process and the parsing of the XPS, the created Java objects
will be directly inserted into the database, and any additional computations will rely on the
data retrieved from it, allowing for a much faster process with respect to the parsing of the
references.xml file. Once the iDoc database will be connected to the system, also retrieving
an element selected on paper will be much faster. Linking the iDoc database to the existing
implementation will require the implementation of the specific DatabaseFinder and
DatabasePublisher classes, as outlined in Figure 6.8 and Figure 6.9.
Additionally, we provided also an implementation of the ElementFinder abstract class
for normal, non-analysed XPS files. In this case, the only semantic categories available are
Word and Character. This implementation allows us to deal also with normal XPS files
not coming from OpenOffice. However, in this case we are only able to track words and
characters and no semantic objects of higher granularity.

The method findElements() implemented in the XPSElementFinder class re-
turns one or more Element objects, depending on the elements selected on paper. The
selection may rely on different gestures a user performs on paper to understand the a priori
undefined intentions of the user (e.g. select all the elements above, all the intersecting
elements, all the nearest elements, etc.). Moreover, the system does not know if the user
wants to highlight an entire word or only some of its characters. We therefore implemented
a simple algorithm for such a task. Starting from the highest granularity level (section), the
system first check how many elements are involved with the user’s gesture. In case that more
than one element is found, it means that the selection is done at the current granularity level
and therefore the system returns all of them. If only one element is found, it might be that the
wanted granularity level is lower than the current one and the lower granularity elements (e.g
paragraphs, tables and graphics) are investigated. This process goes on, recursively, until one
of the following cases takes places:

1. no elements are found: the system goes back at the older granularity level and returns
the parent element.

2. all elements are found: all the investigated sub elements are involved with the opera-
tion, the system goes back at the older granularity level and returns the parent element.

3. more than one element is retrieved: the system is as the right granularity level and it
returns a collection containing these elements.

40

 XpsElementFinder()

findElements

XpsElementFinder

 XpsStandardElementFinder()

findElements

XpsStandardElementFinder

 DatabaseElementFinder()

findElements

DatabaseElementFinder

 ElementFinder()

 findElements()

 getUnzippedFolder()

 createXps()

 intersect()

 getDistanceFrom()

 isFullyPositionedOn()

ElementFinder

Figure 6.8: Finder Classes

 ReferencesPublisher()

publish

updateDatabase

updateSectionXmlRepresentation

ReferencesPublisher

 Publisher()

 publish()

 updateDatabase()

 updateSectionXmlRepresentation()

Publisher

 DatabasePublisher()

publish

updateDatabase

updateSectionXmlRepresentation

DatabasePublisher

Figure 6.9: Publisher Classes

CHAPTER 6. DESIGN AND IMPLEMENTATION 41

4. the smallest granularity (character) is reached and the system returns a collection con-
taining one or more characters.

The flow diagram of Figure 6.10 illustrates the algorithm graphically.

The retrieval of the single elements from the digital document has to be general enough to
be adapted to every authoring tool. For this reason, we decided to use a very simple method
consisting in counting them: when the elements are published within the XPS database, a
reference to their parent (LogicalParent attribute) and the relative position with respect
to their parent (RelativePosition attribute) are inserted along with all the information
about their content and physical position (see Figure 6.3). This additional information is then
used in the retrieval phase to find the right elements.
In order to better explain the retrieval process, let us propose a practical example. With a
digital pen we select a word on the printed document and we want to get access to the cor-
responding digital element within the authoring tool. Starting from the physical coordinates
received from the pen, the ElementFinder retrieves from the database the elements which
are involved with these coordinates. As explained above, these elements contain a reference
to the parent element, in this case a paragraph, that contains it. With the same mechanism,
the system retrieves the section that is the parent element of the paragraph.
The second phase runs in the opposite direction. The counting feature is implemented in
the AdapterXPSOO class (see Figure 6.11): given one or more elements retrieved from
the database, the getOOEntity() method retrieves the corresponding element(s) within
the authoring tool. Using the example above, the section found in the first phase is retrieved
within the authoring tool. Making use of the relative position of its children, the right
paragraph is also retrieved. From the origin of the paragraph, the system counts until it
reaches the position of the desired word and highlights it.
Figure 6.12 shows the retrieval process, outlining the different components of the Semantic
Mapper.
If the document does not contain any sections, the process does not change with the
difference that the element with the highest granularity would be of type Paragraph
instead of Section.

42

STARTCheck gesture at
section level

retrieved
sections > 0?

END

retrieved
sections > 1?

Nothing
found

YESNO

YES

Granularity
level is
Section

Check gesture at
paragraph, table and

graphic level
NO

retrieved
paragraphs > 0?

Granularity
level is single

Section

NO

retrieved
paragraphs == 1?

YES

YES

retrieved
paragraphs > 1 and
< (# paragraphs in

section)?

Granularity
level is Table
and Graphic

YES

Check gesture at
word level

retrieved
words > 0?

Granularity
level is single

Paragraph

NO

retrieved
words == 1?

YES

Check gesture at
character level

YES

retrieved
words < (# words in

paragraph)?

Granularity
level is
Word

NO

YES
NO

retrieved
characters > 0?

Granularity
level is

single Word

NO

retrieved
characters == 1?

Granularity
level is single

Character

YES

YES

retrieved
characters < (#
characters in

word)?

Granularity
level is

Character

NO

YES

NO

retrieved tables
and graphics == 0?

YES

NO

NO

NO

Granularity level
is Paragraph,

Table and
Graphic

retrieved tables
and graphics == 0?

NO

Granularity
level is

Paragraph

YES

Go back to
parent level

Go back to
parent level

Go back to
parent level

Figure 6.10: Automatic Granularity Processing

CHAPTER 6. DESIGN AND IMPLEMENTATION 43

 AdapterXPSOO()

 getOOEntity()

AdapterXPSOO

 TrackChangerTables()

annotateElement()

moveElement()

removeElement()

TrackChangerTables

 TrackChangerText()

annotateElement()

changeElement()

insertElement()

moveElement()

removeElement()

TrackChangerText

 TrackChanger()

 Start()

 Stop()

 getState()

TrackChanger

 TrackChangerSections()

 annotateElement()

 removeElement()

TrackChangerSections

 TrackChangerGraphics()

 removeElement()

TrackChangerGraphics

Figure 6.11: AdapterXPSOO

OO Semantic Mapper

Element 1

Element 2

…

AdapterXPSOO ElementFinder

XPS

Publisher

findElements() getOOEntity()

publish()

Figure 6.12: Retrieval Process

44

7
Exemplar Application: PaperProof

OpenOffice provides a way for tracking changes within a document. Whenever this func-
tionality is enabled, any change to the existing text does not immediately replace the existing
content, but changes are considered as tentative operations that can later be individually
accepted or rejected, either by the same user or by others, in the case of collaborative drafting
of the document.

This chapter presents an exemplar application that makes use of the OpenOffice track-
ing changes features along with the system implemented during this project and the other
technologies introduced in chapter 5. We called this application PaperProof. PaperProof al-
lows the translation of the actions a user performs on a printed document into the OpenOffice
authoring tool. Since the tracking changes feature of OpenOffice is able to deal with different
authors, our application can be easily extended to a multi-authors correction system. The
document should be printed several times and each copy distributed to a different author.
Digital pens have unique IDs that allow the system to assign the corrections to the different
authors that performed them.

7.1 Operations

PaperProof accepts the following five operations:

• Insert

• Delete

• Replace

• Move

• Annotate

45

46 7.1. OPERATIONS

The iGesture framework (introduced in chapter 3.5), enables the system to recognise the
intentions of the user according to the gestures registered by the digital pen during the edit-
ing process of the printed document. The ICR (Intelligent Character Recognition) software
translates the information written by hand into a digital counterpart, which is used as a further
input for some of the operations.
Figure 7.1 highlights the available operations, along with the sequence of needed input ges-
tures.

Insert + ICRor

Delete

Replace + ICRor

Move + +

Free
Annotation

ICR

Two Point
Annotation

+ + ICR

Side
Annotation

+ ICRor

or

or
or

or
or

or

or

or
or

Figure 7.1: Operations and Related Gestures

Please note that there are three possible Annotate operations, depending on what the user
wants to do.

CHAPTER 7. EXEMPLAR APPLICATION: PAPERPROOF 47

The next section will analyse the implementation of the available operations.

7.2 Implementation

Every operation that a user executes on paper with the digital pen is classified as a Correction.
Each correction corresponds to an instance of one of the Java classes that extend the basic
TrackChanger class.
There exist four types of TrackChangers, as shown in Figure 7.2. The four classes,
TrackChangerGraphics, TrackChangerSections, TrackChangerTables
and TrackChangerText, define theirs operations depending on the type of OpenOffice
element that they describe.

 AdapterXPSOO()

 getOOEntity()

AdapterXPSOO

 TrackChangerTables()

annotateElement()

moveElement()

removeElement()

TrackChangerTables

 TrackChangerText()

annotateElement()

changeElement()

insertElement()

moveElement()

removeElement()

TrackChangerText

 TrackChanger()

 Start()

 Stop()

 getState()

TrackChanger

 TrackChangerSections()

 annotateElement()

 removeElement()

TrackChangerSections

 TrackChangerGraphics()

 removeElement()

TrackChangerGraphics

Figure 7.2: TrackChangers Hierarchy

As shown in the diagram, depending on the type of element that the system is dealing with,
the operations have different behaviours:

• Sections
- annotateElement(String textNote): this section is annotated with the
given textNote.
- removeElement(): all the contents of this section are removed from the docu-
ment.

• Graphics
- removeElement(): this graphic element is removed from the document (the op-
eration is not handled by the track changes functionality of OpenOffice).

• Tables
- annotateElement(String textNote): this table is annotated with the
given textNote (the annotation is inserted within the first cell of the table).
- moveElement(Element destination): this table is moved after the given
destination element.
- removeElement(): this table is removed from the document; in order to satisfy

48 7.2. IMPLEMENTATION

the requirements of the track changes feature, all the contents of the table are deleted,
instead of the table itself.

• Text (paragraph, word or character)
- annotateElement(String textNote): this text element is annotated with
the given textNote.
- changeElement(String newText): this text element is substituted by the
given newText.
- insertElement(String newText): the newText is inserted after this text
element.
- moveElement(Element destination): this text is moved after the given
destination element.
- removeElement(): this text element is removed from the document.

The correct operation is executed depending on the type of Element the users selected
and the type of gesture they performed. As already explained in the previous chapter, the
AdapterXPSOO class is provided for the definition of the granularity and the interpretation
of the user intentions: once the AdapterXPSOO has established the granularity of the ele-
ment(s) that the user has selected with the digital pen, the corresponding TrackChanger
type is instantiated. Then the right operations are called depending on the gestures, and the
corrections are automatically executed within OpenOffice.

Since users can make as many corrections as they want, it is important to ensure that
an operation does not influence the following operations, resulting then in erroneous
corrections. In order to prevent this situation, we moved the call to the method responsible of
finding the right element(s) within OpenOffice into the constructor of each TrackChanger
type. This way, instantiating a new TrackChanger automatically stores a reference to the
right OpenOffice element. Moreover, before executing any corrections, we first instantiate all
the TrackChangers needed for the execution of all the corrections. Also in the case of several
authors, all their TrackChangers get instantiated at the same time. This means that from
the very beginning, all the elements of the document that have to be corrected are properly
referenced. In this way, even if they are moved by a previous operation, the corresponding
TrackChangers are still able to retrieve them. We know that we can safely execute all the
corrections without any undesired dependency.

The starting point of the whole application is the class Corrections. The con-
structor shown in Figure 7.3, indicates that instances of this class need four attributes: a
vector of operations, containing all the corrections which have to be performed, the path and
the version of the OpenOffice document which has to be corrected and the path of the XPS
file that is used as repository.
The Corrections class is the connection between the existing infrastructure, presented in
chapter 3, that handles the input sent by the Anoto pen during a proof-reading session, and the
infrastructure implemented in this project: from the ElementFinder class, responsible of
extracting information from the repository about the selected printed elements, through the
AdapterXPSOO, which returns the corresponding OpenOffice digital elements, up to the
TrackChanger, that eventually transforms the user intentions in real operations.
The whole computation is launched in the execute() method highlighted in Figure 7.4,

CHAPTER 7. EXEMPLAR APPLICATION: PAPERPROOF 49

public Corrections(Vector<Operation> operations, String odtFilePath,
 int versionNumber, String xpsFilePath) {

this.operations = operations;
this.versionNumber = versionNumber;

this.xpsFilePath = xpsFilePath;
this.odtFilePath = pdtFilePath;

 this.execute();

}

public synchronized void execute() throws OOException {

for (Operation op : operations) {

 // Retrieve the elements from the XPS database, where xps_x, xps_y,
 // xps_width and xps_height are positional parameters taken from
 // the digital pen’s input.
 Vector<Element> results = finder.findElements(

op.getPageNr(), xps_x, xps_y, xps_width, xps_height);
 …

// Depending on the granularity of the found elements, the right
// TrackChanger is instantiated. Here, for example, a TrackChangerText
// object is created. As arguments it takes a connection to the
// OpenOffice document, the Vector of elements to be corrected and an
// instance of the AdapterXPSOO which is used to get the OpenOffice
// elements within the document.

 TrackChanger trackchanger = new TrackChangerText(connection, results, adapter);

 // The trackchanger is added to the vector of pending corrections, by means
 // of an instance of the class StoredCorrection. This class builds
 // <trackchanger, operation> pairs.

allCorrections.add(new StoredCorrection(trackchanger, op));

 // At the end, all the operations are executed, depending on their type.
 for (int i = 0; i < allCorrections.size(); i++) {

// The current trackchanger and the current operation are taken from the
// vector of corrections.

 TrackChanger trackchanger = allCorrections.get(i).getTrackchanger();
 Operation operation = allCorrections.get(i).getOperation();

// Depending on the type of trackchanger and the type of operation, the
 // right correction is eventually executed.

 if (trackchanger instanceof TrackChangerText)
 {
 if (operation.getName().name().equals(OPERATION.REPLACE.name()))

{
 // Execute the correction (replace).
 ((TrackChangerText) trackchanger)
 .changeElement(((Replace) operation).getText());
 }

…
 }

…

 }

}
}

Figure 7.3: The Corrections Constructor

where only some lines of code are highlighted to give a better insight into the sequence of
operations that are effectively performed. The green comments should clarify the meaning of
the code.

50 7.2. IMPLEMENTATIONpublic Corrections(Vector<Operation> operations, String odtFilePath,

 int versionNumber, String xpsFilePath) {

this.operations = operations;

this.versionNumber = versionNumber;

this.xpsFilePath = xpsFilePath;

this.odtFilePath = pdtFilePath;

 this.execute();

}

public synchronized void execute() throws OOException {

for (Operation op : operations) {

 // Retrieve the elements from the XPS repository, where xps_x, xps_y,

 // xps_width and xps_height are positional parameters taken from

 // the digital pen’s input.

 Vector<Element> results = finder.findElements(

op.getPageNr(), xps_x, xps_y, xps_width, xps_height);

 …

// Depending on the granularity of the found elements, the right

// TrackChanger is instantiated. Here, for example, a TrackChangerText

// object is created. As arguments it takes a connection to the

// OpenOffice document, the Vector of elements to be corrected and an

// instance of the AdapterXPSOO which is used to get the OpenOffice

// elements within the document.

 TrackChanger trackchanger = new TrackChangerText(connection, results, adapter);

 // The trackchanger is added to the vector of pending corrections, by means

 // of an instance of the class StoredCorrection. This class builds

 // <trackchanger, operation> pairs.

allCorrections.add(new StoredCorrection(trackchanger, op));

 // At the end, all the operations are executed, depending on their type.

 for (int i = 0; i < allCorrections.size(); i++) {

// The current trackchanger and the current operation are taken from the

// vector of corrections.

 TrackChanger trackchanger = allCorrections.get(i).getTrackchanger();

 Operation operation = allCorrections.get(i).getOperation();

// Depending on the type of trackchanger and the type of operation, the

 // right correction is eventually executed.

 if (trackchanger instanceof TrackChangerText)

 {

 if (operation.getName().name().equals(OPERATION.REPLACE.name()))

{

 // Execute the correction (replace).

 ((TrackChangerText) trackchanger)

 .changeElement(((Replace) operation).getText());

 }

…

 }

…

 }

}

}

Figure 7.4: The execute() Method

8
Results and Discussion

In this work, we presented a general infrastructure that aims at bridging the gap between
the physical and digital instances of a document. The proposed approach allows users to
move back and forth between these two realities. In chapter 7 we highlighted an exemplar
application, called PaperProof, that is based on the proposed infrastructure. In order to discuss
our approach, in the following we analyse a real-world PaperProof session.

8.1 PaperProof in use

The process starts within OpenOffice, where the digital document is authored (Figure 8.1).
After that the document is printed on paper and it is possible to begin the proof-reading
session.

Figure 8.1: The Authoring Phase

51

52 8.1. PAPERPROOF IN USE

Figure 8.2 shows an example of free form annotations and corrections performed by a user
on the printed version of the OpenOffice document.

Figure 8.2: Free Form Annotations on a Paper Document

First the user performs the corrections and annotates the paper document. Every operation is
inserted into a queue waiting to be transferred to OpenOffice. When the user is finally ready
to transfer the corrections, he touches the “Synchronize” button in the top right part of the
printed document with the digital pen. This causes the corrections to be transferred to the
PaperProof application that transforms them into digital actions.

Figure 8.3: PaperProof Corrections within OpenOffice

Figure 8.3 shows the corresponding OpenOffice document after the execution of the
corrections. Once the process has been finished, the ”Accept or Reject Changes” dialog is
automatically opened, allowing the users to decide whether the corrections have to be applied
or discarded. This dialog is useful also for multi-authors corrections, since it lists the name
of the Author as well as the Date of execution.

CHAPTER 8. RESULTS AND DISCUSSION 53

We now discuss the operations executed on this document.

1. Delete: “technologies”.

(a) Correction on Paper (b) Correction within OpenOffice

Figure 8.4: Delete Operation

The Delete operation is the simplest one, since it requires a single gesture (scratch-out,
chapter 7 for details). At the end of the gesture, a timer starts. If a user begins to write
something within a programmable timeout (currently 4 seconds), the Delete operation
is transformed into a Replace operation; if instead the timer expires or another operation
is executed, the Delete operation is inserted into the pool of pending operations.

2. Replace: “touching” with “selecting”.

(a) Correction on Paper (b) Correction within OpenOffice

Figure 8.5: Replace Operation

In this case, a writing operation immediately followed a delete operation. In the
“Accept or Reject Changes” dialog, the Replace operation appears as the deletion of
“touching” and the insertion of “selecting”.

3. Insert: “and testing” after “production”.

(a) Correction on Paper (b) Correction within OpenOffice

Figure 8.6: Insert Operation

The Insert operation can be executed at every text granularity level. If the gesture
intersects an element, the Insert operation is executed immediately after it. In the case

54 8.1. PAPERPROOF IN USE

that the gesture does not intersect any characters, words or paragraphs, the section
is selected and the Insert operation adds text at the end of the last paragraph of the
section.

4. Move: “Possibilities abound for publishing new forms of interactive documents and
providing paper-based interfaces to applications.” to the end of section.

(a) Correction on Paper (b) Correction within OpenOffice

Figure 8.7: Move Operation

The Move operation is executed as a cut-and-paste operation within OpenOffice. This
has the advantage of preserving the formatting of the cut text (e.g. this formatting
would be preserved at the new position). In the same way as for Replace, the Move
operation is represented in the dialog of operations as a deletion followed by an inser-
tion.

5. Two Point Annotation: “user actions” with “to be changed”.

(a) Correction on Paper (b) Correction within OpenOffice

Figure 8.8: Two Point Annotation Operation

The Annotate operation is not listed within the dialog, since it does not change any
texts. The annotated element’s background is made yellow and the note is added at
the end of the highlighted region. Since there is not yet support for annotations within
OpenOffice, in order to manage the annotations (i.e. to insert new annotations or delete
the existing ones), we installed a very simple plug-in for OpenOffice developed by
Christoph Jopp [43]. Thanks to this tool, the annotations inserted with PaperProof can
then be managed in a simple way.

6. Side Annotation

The Side Annotation is performed by drawing a vertical line on the left of the elements
which have to be annotated. All what is located on the right of the line is annotated
with the text recognised by the ICR software.

CHAPTER 8. RESULTS AND DISCUSSION 55

(a) Correction on Paper (b) Correction within OpenOffice

Figure 8.9: Side Annotation Operation

At the current state of development, PaperProof operates in a satisfactory way. If the users
write or draw on paper in a clean and clear way when they correct and annotate the printed
document, the operations are executed with a good reliability. Still, the lack of accuracy
can easily lead to unexpected results. If for example, while scratching out a word the
pen accidentally touches the next word, this also gets deleted, according to the automatic
granularity explained in chapter 6. This is the consequence of the fact that users’ intentions
are not known a priori and therefore the system should be able to decide how to behave. What
does it mean if users scratch all the characters of a word, but not the last one? Have they only
been unprecise or they really wanted to remove only those characters? The algorithm for the
automatic granularity detection tries to interpret the intentions of the users, resulting in some
cases in a wrong interpretation.

The PaperProof gestures have been selected in a way that should feel natural to the
end user. Still, only when the application has been used extensively by several users, it will
be clear whether it provides a good interface. For this reason, PaperProof should be subjected
to several user studies, in order to establish the effective user-friendliness of its interface.
Indeed, absolutely no user studies have been performed on PaperProof so far.

8.2 Infrastructure

PaperProof successfully validated our infrastructure. The purpose of creating a bridge
between the two instances of a document, not only at a physical level but also using the
associated semantic features, has been achieved. The retrieval of digital elements starting
from the corresponding elements on paper works well, even though it is still not optimal
in terms of speed. This is probably due to the current implementation which uses the XPS
file also as the elements repository. This is costly in terms of performance, since parsing
an XML file and looking for an element within it is a rather slow operation. Moving to the
database provided by the iDoc framework, which is planned for the near future, should make
the retrieval of elements faster and consequently speed up all the applications based on this
infrastructure, like for example PaperProof.
In conclusion, in this work we created an infrastructure that links the digital and physical
instances of a document and showed that it works reliably. We implemented a framework on
top of which applications like PaperProof may be implemented.

The retrieval of elements uses the relative position with respect to the parent elements
containing them. This is a generic approach which can be used also in the development of

56 8.2. INFRASTRUCTURE

other plug-ins (like for example a PaperProof plug-in for Microsoft Word). If we indeed
consider MS Word as a target for the development of a new PaperProof application, the
future implementation might be based completely on the existing infrastructure. Moreover,
the implementation of the iPublish plug-in, would be very simple, since the creation of an
XPS file starting form a MS document through the MS Office 2007 plug-in for XPS already
provides all the semantic information that our infrastructure needs. Therefore, the only
parts that have to be significantly changed are the PaperProof application, to be compatible
with the MS Word SDK, and the iDoc extension, with the implementation of a proper
SnippetExtractor.

Of course there are many possibilities to improve the current system. In the next sec-
tion, we will analyse some more points of the infrastructure that still can be improved and
propose some possible developments for the near future.

9
Future Work

The existing implementation may be divided into three main components: (i) The iPublish
plug-in, identifying the semantic information within the authoring tool; (ii) the iDoc exten-
sion, responsible for the storage of semantic and physical information and the retrieval of
digital elements; (iii) the PaperProof application, transferring annotations and corrections on
paper back in the original authoring tool. Future work in all of these three areas might range
from simple improvements of the current implementation to the development of complete
new features.

Here, we present a list of limitations of the current implementation ordered by the
component to which they refer. This inventory can be taken as an incentive for the
improvement of the existing infrastructure.

9.1 iPublish plug-in

• Since every shape drawn by the plug-in must provide an ID, which is also drawn within
the shape, the highlighting shapes cannot be arbitrarily small. A minimum size is
required to allow the shape to contain the ID which labels it.

• The section highlighting process is page-based, meaning that the width of the high-
lighting shape of a section is exactly the same as the width of the page. If the sections
of a document span several columns, the SectionsHighlighter fails to recog-
nise them. In the current implementation, in the case of multi-column documents, the
semantic analysis must skip the section level and starts directly at the paragraph level.

• If the width of a table is not explicitly specified, meaning that the table takes the width
of the element that contains it, the TablesHighlighter considers the width of the
table equal to the width of the page. As in the previous point, this can cause problems
if the document contains columns and the table is in one of them.

57

58 9.2. IDOC EXTENSION

• The internal analysis of the tables has not been implemented. The existing code is able
to highlight a table, but not to analyse its content. Thus, the elements contained within
the table can not be resolved as single elements. Selecting any of them will make the
PaperProof application select the entire table.

• The TablesHighlighter cannot highlight tables that span more than one page.

• Some kinds of bullets of OpenOffice are misinterpreted when the document is printed
with the XPS virtual printer. The resulting XML code contains characters that are not
accepted by standard XML editors.

• The MS XPS virtual printer fails also to print OpenOffice documents, if they contains
several pictures. The resulting XPS pages contain only the pictures without the text.

• Within OpenOffice, several properties are defined for a paragraph. One of them is
called “below-spacing” and represents the space that OpenOffice keeps before render-
ing the next paragraph. If the value of the “below-spacing” property is larger than 0,
the TextHighlighter will not be able to understand the exact end position of the
paragraph, resulting in an incorrect highlighting shape.

We should spend a few words for one last consideration on the iPublish plug-in. OpenOffice -
as any other authoring tool - offers a very large palette of functionalities and therefore allows
for a huge variability in the shape and content of digital documents that finally will have to
be processed by the plug-in. The task of rendering the plug-in robust against such a large
unpredictability is surely not trivial.

9.2 iDoc extension

• The existing code needs the OpenOffice document to contain sections as the root ele-
ments from which digital elements with finer granularity can be retrieved. Fixing this
limitation will be straighforward, since the code has been designed to be able to start at
finer granularity, and the limitation lies only in the implementation.

• When the original OpenOffice file is printed, the printing process is captured by the
iPublish plug-in that starts the analysis for the definition of the semantic information.
At the end of this process, the document is printed to an XPS file that is subsequently
annotated by this iDoc extension, which enriches it with the semantic information of
the elements with larger granularity (section elements). This operation has not yet
been integrated into the whole infrastructure, meaning that the printing operation and
the following XPS annotation have still to be launched manually.

• During the XPS annotation, the check for containment of a graphic element into a
section uses the position of its upper left corner. It would be better to consider its
centre instead, or even better, its centre of mass, since it can be composed by many
graphics sub elements combined.

• The XPS annotation causes the XPS file to grow in size. When a section is analysed
for its sub elements, a new temporary XPS file containing the annotation of the sub
elements is created. This file contains the same fonts as the original one, but the XPS

CHAPTER 9. FUTURE WORK 59

creation process computes each time different names for the contained fonts. When the
XPS snippets of the sub elements are embedded in the original file, the newly created
font files are copied into the original file to avoid problems with the fontURI attributes.
This leads to an increase of the file size. A possible solution would be to change the
fontURIs of the new annotated elements according to the name of the font files of the
original XPS file.

9.3 PaperProof

• Usability studies should be performed to improve the user interface of PaperProof.
Feedback from the users might suggest that new gestures would be needed or that
some of the existing ones should be corrected or replaced.

60 9.3. PAPERPROOF

Acknowledgments

I would like to thank my supervisor Nadir Weibel for his unlimited support during the whole
project. Furthermore, I want to thank Prof. Moira C. Norrie for giving me the opportunity to
accomplish my Master Project in her group.

61

Bibliography

[1] A. J. Sellen and R. Harper. The Mith of the Paperless Office. MIT Press, November
2001.

[2] Global Information Systems Group. http://www.globis.ethz.ch/.

[3] Moira C. Norrie and Beat Signer. Information Server for Highly-Connected Cross-
Media Publishing. Information Systems, 30:526–542, 2005.

[4] Moira C. Norrie, Beat Signer, and Nadir Weibel. General Framework for the Rapid
Development of Interactive Paper Applications. In Workshop on Collaborating over
Paper and Digital Documents, Banff, Canada, November 2006.

[5] Nadir Weibel, Moira C. Norrie, and Beat Signer. A Model for Mapping between Printed
and Digital Document Instances. In Proceedings of the 2007 ACM Symposium on Doc-
ument Engineering, 2007.

[6] Anoto AB. http://www.anoto.com/.

[7] ProofRite. http://www.cs.umd.edu/hcil/proofrite/.

[8] Kevin Conroy, Dave Levin, and Franco̧is Guimbretière. ProofRite: A Paper-Augmented
Word Processor. In Demo Session of UIST 2004, 17th Annual ACM Symposium on User
Interface Software and Technology, Santa Fe, USA, October 2004.

[9] XLibris. http://www.fxpal.com/?p=XLibris/.

[10] Gene Golovchinsky and Laurent Denoue. Moving Markup: Repositioning Freeform
Annotations. In Proceedings of UIST 2002, 15th Annual ACM Symposium on User
Interface Software and Technology, Paris, France, October 2002.

[11] EdFest. http://www.edfest.ethz.ch/.

[12] Moira C. Norrie. Paper on the Move. In Workshop on Ubiquitous Mobile Information
and Collaboration Systems (UMICS), CAiSE 2004, 16th International Conference on
Advanced Information Systems Engineering, Riga, Latvia, June 2004.

[13] BBC - The BluePlanet TV Series. http://www.bbc.co.uk/nature/
programmes/tv/blueplanet/.

[14] Beat Signer, Moira C. Norrie, Nadir Weibel. Print-n-Link: Weaving the Paper Web. In
Proceedings of DocEng 2006, ACM Symposium on Document Engineering, Amsterdam,
The Netherlands, October 2006.

63

http://www.globis.ethz.ch/
http://www.anoto.com/
http://www.cs.umd.edu/hcil/proofrite/
http://www.fxpal.com/?p=XLibris/
http://www.edfest.ethz.ch/
http://www.bbc.co.uk/nature/programmes/tv/blueplanet/
http://www.bbc.co.uk/nature/programmes/tv/blueplanet/

64 BIBLIOGRAPHY

[15] Adobe Systems inc. PDF Reference, Adobe Portable Document Format. 2006.

[16] Microsoft XPS. http://www.microsoft.com/whdc/xps/default.mspx.

[17] Scalable Vector Graphics. http://www.w3.org/Graphics/SVG/.

[18] Beat Signer. Fundamental Concepts for Interactive Paper and Cross-Media Information
Spaces. PhD thesis, ETH Zurich, Switzerland, 2006. Dissertation, ETH No. 16218.

[19] iGesture. http://www.igesture.org/.

[20] MyScript. http://www.visionobjects.com/.

[21] OpenOffice.org. http://www.openoffice.org/.

[22] Sun Microsystems. http://www.sun.com/.

[23] Oasis OpenDocument Format. http://www.oasis-open.org/.

[24] GNU Lesser General Public License. http://www.gnu.org/licenses/lgpl.
html.

[25] Microsoft Office. http://office.microsoft.com/.

[26] Microsoft Word. http://office.microsoft.com/word/.

[27] Microsoft Excel. http://office.microsoft.com/excel/.

[28] Microsoft PowerPoint. http://office.microsoft.com/powerpoint/.

[29] Adobe Flash. http://www.adobe.com/.

[30] Microsoft Access. http://office.microsoft.com/access/.

[31] Corel Draw. http://www.corel.com/.

[32] Microsoft Publisher. http://office.microsoft.com/publisher/.

[33] OpenOffice.org SDK. http://www.openoffice.org/dev_docs/source/
sdk/.

[34] Adobe Systems inc. PostScript Language Reference, Third Edition.

[35] Reverse Polish Notation. http://mathworld.wolfram.com/
ReversePolishNotation.html.

[36] Sony-Ericsson. http://www.sony-ericsson.com/.

[37] Nokia. http://www.nokia.com/.

[38] Logitech. http://www.logitech.com/.

[39] Hewlett-Packard. http://www.hp.com/.

[40] XInclude W3C Recommendation. http://www.w3.org/TR/xinclude/.

http://www.microsoft.com/whdc/xps/default.mspx
http://www.w3.org/Graphics/SVG/
http://www.igesture.org/
http://www.visionobjects.com/
http://www.openoffice.org/
http://www.sun.com/
http://www.oasis-open.org/
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://office.microsoft.com/
http://office.microsoft.com/word/
http://office.microsoft.com/excel/
http://office.microsoft.com/powerpoint/
http://www.adobe.com/
http://office.microsoft.com/access/
http://www.corel.com/
http://office.microsoft.com/publisher/
http://www.openoffice.org/dev_docs/source/sdk/
http://www.openoffice.org/dev_docs/source/sdk/
http://mathworld.wolfram.com/ReversePolishNotation.html
http://mathworld.wolfram.com/ReversePolishNotation.html
http://www.sony-ericsson.com/
http://www.nokia.com/
http://www.logitech.com/
http://www.hp.com/
http://www.w3.org/TR/xinclude/

BIBLIOGRAPHY 65

[41] Xerces XML Parser. http://xerces.apache.org/xerces2-j/.

[42] iText. http://www.lowagie.com/iText/.

[43] Christoph Jopp. OpenOffice Annotations Plug-In. http://en.ooo-info.org/
documentation/annotation_tool.html.

[44] Michael Grossniklaus, Moira C. Norrie, Beat Signer, and Nadir Weibel. Producing
Interactive Paper Documents based on Multi-Channel Content Publishing. In Proc.
of AXMEDIS 2007, 3rd International Conference on Automated Production of Cross
Media Content for Multi-channel Distribution,, Barcelona, Spain, November 2007.

http://xerces.apache.org/xerces2-j/
http://www.lowagie.com/iText/
http://en.ooo-info.org/documentation/annotation_tool.html
http://en.ooo-info.org/documentation/annotation_tool.html

	Title
	Contents
	1 Introduction
	2 Motivation and Related Work
	3 Existing infrastructure
	3.1 iPublish
	3.2 iDoc
	3.3 iServer
	3.4 iPaper
	3.5 iGesture
	3.6 Intelligent Character Recognition

	4 Document Life-Cycle
	5 Technologies
	5.1 OpenOffice and OpenOffice SDK
	5.2 Page Description Languages
	5.2.1 PostScript
	5.2.2 Portable Document Format
	5.2.3 XML Paper Specification

	5.3 Anoto

	6 Design and Implementation
	7 Exemplar Application: PaperProof
	7.1 Operations
	7.2 Implementation

	8 Results and Discussion
	8.1 PaperProof in use
	8.2 Infrastructure

	9 Future Work
	9.1 iPublish plug-in
	9.2 iDoc extension
	9.3 PaperProof

