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ABSTRACT

Recent approaches for linking paper and digital informa-
tion or services tend to be based on a one-time publish-
ing of digital information where changes to the printed
document become isolated from its digital source. Struc-
tural information which is available when authoring a
digital document is lost during the printing process mak-
ing it difficult to map interactions within the physical
document to the corresponding elements of the digital
document. We identify the necessary requirements for
an integrated digital and paper-based document lifecy-
cle and present our solution which supports a seam-
less transition between digital and physical document
instances. PaperProof is presented as a paper-based
proof-editing application that exploits our new approach
for mapping pen-based interactions with paper docu-
ments to the corresponding operations in the digital
document instance.

1. INTRODUCTION

Recent developments in the area of interactive paper
in terms of enabling technologies, supporting infrastruc-
tures and applications have demonstrated the potential
benefits arising from an integration of paper with dig-
ital services and information. Multiple projects have
focused on paper-based physical interfaces for digital
services where actions on paper documents are mapped
to their digital counterparts.

The realisation of paper-digital document integration
normally involves two main steps. First, a digital de-
vice has to bridge the gap between a physical paper
document and the digital world. Nowadays, there exist
several technologies that enable the linking from printed
documents to digital information including digital cam-
eras, ultrasonic receivers, magnetic field sensors, bar-
code readers, RFID antennas and Anoto’s Digital Pen
and Paper technology [2]. Regardless of the hardware
solution used, the general approach is to couple a phys-
ical object with an identifier—a Globally Unique Iden-
tifier (GUID) in the case of barcodes and RFID tags or
areas for ultrasonic positioning technologies, magnetic
receivers and Anoto-based devices—and transmit that
information to a computing device. Second, one needs
to define a link between a user action on paper and the
corresponding digital service. The information avail-
able on the physical paper document should therefore
be captured and translated into a digital language.

A variety of research projects and commercial prod-
ucts have investigated how to enable this kind of paper-
driven digital services. Wellner’s Digital Desk [30] is
a camera-based approach, while the Wacom Graphics
Tablets [28] make use of a weak magnetic field applied
to the writing surface and the mimio Xi [13] is a prod-
uct based on ultrasonic positioning. Barcodes have been
used in a range of projects in the past, while RFIDs tags
are quite common in more recent ubiquitous computing
applications such as the mediaBlocks project [25]. The
Anoto technology seems to be more flexible and may be
easily integrated into the paper document space since it
is essentially based on regular paper and a digital pen.
In the last few years, multiple projects and applications
have been realised based on Anoto technology includ-
ing PADD [6], ButterflyNet [31], Hitachi iJITinLab [7],
EdFest [15], PaperPoint [24] and Print-n-Link [17].

However, so far, most of the approaches for linking
paper and digital documents tend to be “one-way solu-
tions” which means that they generate interactive paper
documents from a digital instance rather than enabling
seamless transitions back and forth between the digital
and paper representations of a document. The main
focus is on the interaction from a paper document to
some sort of digital service, neglecting the information
which was available during the authoring of the digital
document instance. If we take into account the author-
ing process, it is easy to realise that a large amount of
structural and possibly also semantic information about
the content of the document is available within the au-
thoring tool. At the time of printing, information about
the structure of the document as well as the different el-
ements that the document consists of (paragraphs, im-
ages, tables, etc.) is usually lost when the document
is transformed into a graphical representation without
any structural metadata. To give an example, this re-
search paper was authored using a IIEX editor and
transformed into a PDF document which could then
be printed on paper. The important thing to note is
that from a printed version of this document we no
longer have access to the explicit structural information
present in the IITEX authoring tool.

Therefore, the linking between paper and digital doc-
uments is often bound to the concept of areas only and
does not provide easy access to elements within the dig-
ital document that the user actually interacted with on
paper through actions such as underlining or circling



(e.g. a word or a paragraph). This capability would re-
quire links between the physical and digital document
instances based not only on IDs or the physical (x,y) po-
sition of elements within the printed document, but also
based on structural information available in the source
document. By having such a mapping back to the orig-
inal structural elements, we could select single logical
elements in a printed document and perform actions on
the corresponding digital counterpart.

In previous work, we defined a model for the seam-
less mapping between a digital document instance and
its printout [29]. Based on this model, we developed the
iDoc framework which is capable of combining the meta-
data from both digital and printed documents, thereby
enabling a true two-way interaction. In this paper, we
present PaperProof, an interactive paper application
based on the open source OpenOffice authoring tool [18].
PaperProof exploits the features of the defined model
and provides a real-world application of the iDoc infras-
tructure. It proposes a solution for the common prob-
lem of automatically integrating corrections and anno-
tations done during the paper-based proof-reading of a
document. A generic approach to dynamically map a
physical position on paper to elements within the orig-
inal digital document instance is proposed and the in-
frastructure capable of managing the physical represen-
tation of digital documents on paper is outlined.

In Section 2, we motivate the need for an integrated
paper-digital proof-editing system and present different
existing approaches for mapping between paper and dig-
ital document instances. Section 3 introduces the re-
quirements for paper-digital document representations
and the corresponding interactive proof-editing system.
In this section, we also classify existing approaches based
on these requirements. In Section 4, we present our
vision for an integrated paper-digital document lifecy-
cle. Sections 5 and 6 outline our approach for binding
a digital document to its paper versions and the map-
ping from paper back to the digital document. The
PaperProof proof-editing application that validates our
paper-digital mapping solution is presented in Section 7.
Some details about the implementation of PaperProof
are given in Section 8, while Section 9 compares it to ex-
isting approaches. Finally, concluding remarks as well
as some comments about future extensions are provided
in Section 10.

2. BACKGROUND

By observing how people work while creating docu-
ments, we can identify three main phases: i) the author-
ing phase, which normally is performed on a computer
and results in a first draft of the digital document, ii)
the proof-reading phase which is often done on a printed
paper version and iii) the editing phase where annota-
tions from a printout are transferred back to the digi-
tal source document. During the proof-reading phase,
two types of handwritten markup are common—editing
instructions and comments. The phases are often iter-
ative and concurrent. This means that, in the extreme
case, multiple “reviewers” may be annotating different
paper copies of the same document concurrently, while
one or more authors continue to work in parallel on dig-

ital versions of the document. In this case, the process
of inserting annotations and corrections into the digital
document becomes even more difficult since the author
has to deal with corrections from multiple users which
may also overlap. There are cases, especially in a con-
current scenario, where digital aids such as a change
tracking mechanism offered by an authoring tool might
be used. Even if these tools are only bound to the dig-
ital document and have no connection with the paper
instances, they share the concept of annotations as a
building block of the proof-reading system.

Document annotations have been extensively anal-
ysed in the past and their role in increasing the value
of the source document has been recognised. As out-
lined by Marshall [11], different systems have been im-
plemented to support the annotation process of digi-
tal information. Sellen and Harper [21] point out how
the process of annotating and marking up is one of the
key affordances which often makes paper the preferred
medium for interacting with a document. System archi-
tectures and applications for different types of paper-
based annotations have been described in the past in-
cluding, for example, a framework for cross-media an-
notations [4].

In this section, we provide a brief overview of exist-
ing digital and paper-based approaches for annotating
documents, focussing on projects using digital pens or
Tablet PCs.

Adobe Acrobat

The prevalence of Portable Document Format (PDF)
documents as a document exchange format in combina-
tion with the possibility to easily read them on any de-
vice and any operating system, places Adobe Acrobat[1]
at a privileged position for the digital proof-reading of
documents. Adobe Acrobat Professional allows a re-
viewer to annotate a document either by means of free-
form annotations as written on a Tablet PC or with
regular textual annotations entered via the keyboard.
The notes are stored as separate metadata and may be
printed together with the document. A highlighting fea-
ture is provided in order to emphasise specific parts of a
document. Other functionality includes text and graph-
ical editing.

The latest version of the Acrobat tool also supports
shared reviews by means of network folders, WebDAV
servers, or Microsoft SharePoint Services and the cor-
responding synchronisation mechanism. Authors of dif-
ferent comments may be identified by their notes’ style
attributes (e.g. colours). If a document was originally
authored in Microsoft Word and exported as a tagged
PDF or if it has been drawn in AutoCAD and then
transformed into a PDF with the AutoCAD PDFMaker,
Acrobat provides the possibility to export the annota-
tions and to import notes, comments and even text el-
ements added to the source document. However, while
it is convenient to use the stylus on a Tablet PC for
simple free-form annotations, more complex operations,
such as deleting a word or changing some text, require
the use of a mouse and keyboard.



Microsoft Ink Annotations

With the Windows XP Tablet PC and Windows Vista
operating systems, Microsoft introduced the concept of
ink annotations. Ink annotations were first introduced
in the Windows Journal tool which allows a Tablet PC
user to draw on the screen with a stylus and insert free-
form annotations. This feature is now also part of Mi-
crosoft Office tools such as OneNote and Word, where
ink annotations can be inserted in three different ways:
(i) an ink drawing rendered into a dedicated canvas, (ii)
an ink note rendered on top of existing content as a
free-form annotation, or (iii) an ink comment consisting
of a side note with the free-form annotation.

Similar to Adobe Acrobat, the widespread use of Mi-
crosoft Office also places this tool at a privileged posi-
tion for the proof-reading of digital documents. How-
ever, even though Microsoft Office provides a change
tracking mechanism, the free-form notes supported by
ink annotations are not integrated within this mecha-
nism and changing the layout of the document can cause
problems. For example, adding or removing content be-
fore or after the annotations may destroy the alignment
between annotations and content. Thus, reviewers who
want to collaboratively proof-read a document using the
change tracking functionalities still have to use mouse
and keyboard interactions.

XLibris

XLibris [20] is a project that supports the active read-
ing of documents. The system was built for an early
Tablet PC prototype. It proposes an annotation system
based on free-form annotations which tries to mimic in-
teraction with regular paper documents. The user is
presented with a scanned version of the paper docu-
ment which may be annotated with a pen. The anno-
tations do not have to conform to any form or struc-
tural constraints and are inserted into the documents
based on the pen’s (x,y) position without considering
any components of the anchored elements. The algo-
rithm on which XLibris is based preserves the position
of the annotations based on a reflow mechanism, even
if the document is viewed with different fonts, different
aspect ratios or on different devices. The annotation
reflow functionality anchors the notes at a particular
position within the digital document. Therefore con-
tent may be moved without losing the connection with
the annotated element. In XLibris, each annotation is
attached to a pagination-independent location. How-
ever, the document’s content is static and may not be
changed.

PenMarked

An annotation tool designed for teaching and correct-
ing student assignments is PenMarked [19]. The system
enables a teacher to annotate student assignments in
computer programming with comments and scores us-
ing a Tablet PC. Assignments are regarded as fixed doc-
uments since there is no collaborative authoring. There-
fore annotation reflowing is not supported. Marks are
processed by means of Optical Character Recognition
(OCR) technology and collected to summarise the re-

sults of the assignment. Even if the correction of pro-
gramming assignments might be effective on a fixed
paper-like representation, this task often requires inter-
action with the digital source which is not supported by
the tool.

ProofRite

ProofRite [3] is a word processor developed by Con-
roy et al. based on Anoto technology. It supports the
merging of annotations made by different users on a
printed copy of a document with the digital source doc-
ument. After making corrections on the printed doc-
ument version, users may continue editing the digital
document. ProofRite also supports the reflowing of the
markings according to changes made by the users. The
main purpose of ProofRite is to automatically transfer
any paper-based annotations to the corresponding digi-
tal document rather than to interpret editing markup
such as the deletion of a word and execute the cor-
responding operations on the source document. Also,
ProofRite does not provide any change tracking func-
tionality within the digital document.

3. REQUIREMENTS ANALYSIS

The process of proof-reading a document is a com-
plex procedure involving multiple tasks and may span
the digital and paper worlds or be a purely digital op-
eration. The affordances of paper documents with re-
spect to their digital counterpart have already been in-
troduced and paper has been identified as an important
medium for the proof-reading of a document. However,
we should not forget the tools for digital editing which
can be extremely helpful, especially in collaborative au-
thoring. For this reason, we introduce the concept of
a mixed paper-digital proof-reading system and analyse
its requirements.

To be effective, such a system must be fully integrated
within the publishing process. In other words, users
wishing to proof-read a document on paper should be
able to use their standard tool for the authoring of the
digital document and print out an interactive paper ver-
sion of it without much effort. As soon as the process
of proof-reading is finished, the integration of the cor-
rections done on paper into the digital source document
should be automatic. Therefore, our goal is to have a
proof-editing system rather than simply a proof-reading
system which only records changes to be made as anno-
tations without actually performing them.

The interaction with the system should be as intu-
itive as possible and cater for different categories of
users and tasks. There exist multiple forms of proof-
reading or copy-editing a document. Standards such as
the BS 5261 proof-reading mark revision [8] proposed
by the British Publisher Association or the ISO stan-
dard 5776 [9] are used by professional publishers and
should be supported, but also more open approaches
used by non-professionals should be taken into consid-
eration. By generalising the idea behind these stan-
dards as well as informal markup commonly used by
authors, all of the symbols used may be grouped un-
der the same concept of gestures. Therefore we believe



Adobe Acrobat | Microsoft Office + | Xlibris | PenMarked | ProofRite
Professional Ink Annotations

Paper-digital integration v
Automatic publishing v v v
Free-form annotations v v v v v
Proof-reading integration v v v v
Annotation reflow v v v
Handwriting recognition v
Multiple reviewers v v v
Gesture support
Change tracking (v)
Semantic mapping (v)

Table 1: Comparative requirements analysis

that a gesture-based approach should be supported by
every paper-based proof-editing system. Moreover, the
system should support the definition of new gestures
and the assignment of operations to the corresponding
gestures to support different forms of markup. For ex-
ample, an inverted caret (V) might be interpreted as
an insert operation to be executed within the digital
authoring tool.

As soon as the number of operations increases and
the corresponding corrections are executed automati-
cally within the authoring tool, it becomes difficult for
the users to retrieve and understand the changes that
have taken place within the digital source document.
For this situation, we can use the change tracking func-
tionality that is available in most modern authoring
tools. The tracking of changes within a digital docu-
ment becomes more difficult if the document has been
proof-read by multiple reviewers, both on paper or in
digital form. Multiple reviewers should be supported
by identifying their corrections and highlighting them
in a distinctive manner within the digital document.
Again, in most modern authoring tools, this functional-
ity is already provided and a paper-digital proof-editing
system should also support it when working with paper
documents.

In Section 2, we recognised a second form of markup
that is commonly used to simply provide comments to
the authors rather than editing instructions. We refer
to these as free-form annotations and it is important
that a paper-digital system should also be able to in-
tegrate paper-based as well as digital free-form anno-
tations into the digital source document. Further, in
the case of paper documents, it should be possible for
handwritten free-form annotations to be integrated au-
tomatically into the digital source document as digital
text based on handwriting recognition technologies.

Once annotations have been inserted into the source
document, users should be free to edit and update the
document or to display it in a different format without
losing the association of an annotation to the part of
the document that it annotates. This is known as an-
notation reflow functionality and should be offered by
the proof-editing system.

To fully support many of the requirements outlined
above, it is necessary to have a structural mapping from
paper back to document elements within the digital au-

thoring tool. By this, we mean that it should be possible
to associate logical elements within a paper document
such as paragraphs, words, table entries and images
with their digital counterparts and to do so at differ-
ent granularity levels. Hence, it should be possible to
select an entire section, a paragraph within it, a word
or even a single character and apply an operation to
the corresponding element within the digital document.
Furthermore, it is important that the representation of
the element on paper should be fully independent from
its digital representation so that the mapping can be
maintained over different versions of both the digital
and printed instances of a document. Thus the map-
ping from a sentence within a paper document back to
the corresponding structural element within the digital
source document should still apply even if that docu-
ment has been edited since it was printed.

Comparative Analysis

The solutions presented in Section 2 already support
some of the requirements outlined above as summarised
in Table 1. The only real paper-digital system is Proof-
Rite while the other tools are based on a paper-like rep-
resentation of a digital document on a display. The ma-
jority of these tools support the publishing process since
it is reduced to just displaying the document. XLibris
requires a special transformation of the source docu-
ment, while there is currently no support for the auto-
matic publishing of ProofRite documents. Some of the
requirements such as the insertion of free-form annota-
tions or the reflow of these notes are supported by many
systems. Note that PenMarked and the Adobe Acrobat
tool do not support annotation reflow since they are
based on static documents.

Even if annotations are supported by most of the
mentioned systems, there is still very limited support
for handwriting recognition which is currently fully sup-
ported only by Microsoft’s ink annotations. As soon as
the interaction becomes complex and multiple authors
or reviewers are involved, Adobe Acrobat, Microsoft Of-
fice and ProofRite are the only applications that can
still handle the annotations. The concept of gestures
is not supported by any of the presented systems and
only Microsoft Word makes use of the integrated change
tracking, even if there is no way to interact with the tool
through the ink annotations.



Most approaches do not take into account any of the
structural information present at authoring time. Once
a digital document is printed on paper, it is no longer
possible to directly access the digital counterpart of a
structural element printed on paper, nor is it possible to
automatically establish a link between the printed ele-
ments and the original objects of the source document.
The only system which partially supports this interac-
tion is the Adobe Acrobat tool which may export some
of the corrections made on the PDF into the source au-
thoring tool, but only if the PDF has been generated
with special tools for tag insertion. ProofRite has simi-
lar problems since it tracks the position of annotations
on paper and anchors them to the elements (i.e. words)
rendered at the same position within the digital docu-
ment. The created link is based only on the physical
positions of the annotations and anchored elements and
not on the link’s semantic meaning. This implies that
if the format of digital elements is changed after print-
ing (e.g. different font size), the physical (x,y) positions
of the elements may differ from the ones recorded at
printing time and ProofRite is no longer able to link the
correct elements. This lack of structural information is
a major weakness of most existing systems. The solu-
tion for this problem is to retain structural information
when generating a physical rendering of a document.

4. THE DOCUMENT LIFE-CYCLE

The requirements analysis already highlighted the ma-
jor steps in the production of interactive paper docu-
ments and stressed the need to support the bidirectional
and continuous transition between paper and digital me-
dia. By analysing the life-cycle of a document in digital
and paper media, we can identify four essential stages
that form a logical and cyclic workflow starting and end-
ing within the authoring tool as shown in Figure 1.

Digital document
instance within the
authoring tool

Dynamic retrieval of
elements within the
original digital document

Structural analysis of
the digital document

Physical document
instance on paper

Figure 1: Document life-cycle

Nowadays, the first stage usually involves a digital au-
thoring tool (e.g. Microsoft Word, OpenOffice Writer).
An author normally uses such a tool to create an ini-
tial version of the document. Since we want to sup-
port paper-based proof-editing, the next step is to print
out the document. In order to bridge the semantic gap

between paper and digital media, another important
stage must be executed before the printing process—the
structural analysis of the digital document. This step
consists of extracting the document’s structural infor-
mation (e.g. sections, paragraphs and words) and mak-
ing it persistent in order to be retrieved at a later stage
while interacting with the physical document instance.
For this reason, we enrich the publishing process in order
to store additional information for single structural ele-
ments within the authoring tool. The third stage is the
generation of the paper document which will be used for
the proof-editing phase. At this point, the fourth stage
is executed and, depending on the user’s actions on pa-
per, the digital elements are retrieved and the mapping
between the physical and digital instances is performed.

As shown in Figure 1, the semantic analysis of the
digital document and the dynamic retrieval of the dig-
ital elements are the core elements enabling a bidirec-
tional mapping between printed and digital document
elements. The definition of such a mapping mainly
involves three tasks: (i) the implementation of a tool
which intercepts the publishing flow within the author-
ing tool and analyses the structural information of the
document prior to it being printed on paper, (ii) the de-
sign and implementation of an infrastructure that man-
ages mixed physical and digital information coming from
the two document instances and (iii) the design of a tool
to effectively retrieve a digital element from a physical
(x,y) position, resulting in a bidirectional mapping be-
tween printed and digital document versions.

Our vision of an integrated document life-cycle gives
users the freedom to perform the same type of opera-
tions on either a printout or a digital version on screen.
In the remainder of this paper, we will explain how
this goal was achieved and provide more details about
the mapping between digital and physical document in-
stances. The approach described in the following is
based on a specific Page Description Language (PDL),
the Microsoft XML Paper Specification (XPS) [12], but
is general enough to be used with other PDLs.

S.  FROM DIGITAL TO PAPER

The transition between digital and paper document
instances must preserve the structural information avail-
able at authoring time. We enable the persistent storage
of this information by applying two mechanisms that we
call structure highlighting and PDL annotation.

Structure Highlighting

In order to extract the structural information from a
digital document, we introduce the concept of a high-
lighter that uses graphical shapes as structural contain-
ers. During the publishing process, the document tree
is analysed, information about the document structure
is extracted and shapes are defined for every high-level
object in the tree. These shapes are drawn around the
different objects highlighting them and the document is
transformed into a physical representation through an
XPS virtual printer. Since the highlighting shapes are
part of the document, they are not lost during the print-
ing process and may be retrieved from the XPS file.



We have defined several types of highlighters depend-
ing on the structural elements that they are represent-
ing. The abstract class Highlighter is responsible for
the activation of the connection with the authoring tool
and for the printing of the document to an XPS file. For
highlighting specific elements, several implementations
are provided: section, table, graphics and text. They
all provide a different implementation of the abstract
class, adding specific methods for the execution of the
highlighting process at the different structural levels. In
order to better understand the concept, Figure 2 shows
the result of highlighting a document at paragraph level:
each paragraph of the first section has been enclosed by
a polygon shape responsible for collecting all the words
that are part of the paragraph.

[ C: \develop\iDoc\PaperProof\client\src\main\data\PaperProof - Open
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iPaper

iPaper is a framework that supports the rapid development and deployment of interactive paper
applications. Active areas can be defined on paper and linked to various forms of digital media and
services. By providing an extensive library of active components, users can rapidly develop a wide
range of applications without having to do any programming. iPaper was developed as a component
of iServer, a general cross-media server, which means that active areas can be linked to and from a
wide range of physical and digital media including web pages, images, video, flash animations,
databases and RFID tags as well as application programs

iGesture

iGesture is a general and extensible framework to support the development and deployment of
gesture recognition algorithms. The APT makes it simple for application developers to define their
own gesture-based interfaces. It is device independent and can be used with a mouse, tablet or
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Figure 2: Highlighted paragraphs

Dynamic Granularity

The document tree may contain structural information
at different granularity levels. The solution of tracking
single elements within a document, from section to char-
acter level, by highlighting them and extracting their
positions is not a feasible solution, since it requires a
large amount of space and computation time. A more
appropriate approach is to make the operation dynamic
by grouping smaller elements into higher level granular-
ity sets (e.g. characters into words or words into para-
graphs) and tracking the subelements only when they
are really needed. Such an approach was first presented
in [29].

The idea behind this approach is to have the possi-
bility of referring to the logical object representation at
different levels of granularity. For this reason, the con-
cept of an element has been defined according to a com-
posite design pattern [5] as shown in OM notation [14]
in Figure 3.

An element belongs to the AtomicElements collection
if it does not contain any lower-level objects. Otherwise,
it is inserted in the CompositeElements collection and
a ComposedBy relation is created for each of its child
elements.

Consequently, the element storage is first defined only
at a high-level granularity, so that a small number of

HasProperties ComposedBy

[ elemer
Atomic Composite

Elements [ Elements

propet elemer

Properties

Figure 3: Element model

objects have to be analysed in a first step. For the anal-
ysis of elements at lower-level granularity, a dynamic
approach is taken. Since the composite pattern creates
a hierarchy of elements that also represents important
structural information, we start from the highest gran-
ularity level and, if necessary, compute the subelements
down to the desired granularity in a recursive manner.
Therefore, the system offers a dynamic storage model
for elements that refines the granularity of the stored
structural information on demand.

PDL Annotation

After the highlighting phase, elements that are struc-
turally linked together are enclosed and presented as a
single shape but the physical representation of the doc-
ument does not yet provide a structural model. More-
over, the shapes interfere with the rest of the document
content. In order to remove the shapes and insert struc-
tural information about the enclosed elements, we intro-
duce the concept of PDL annotations. By using an XPS
snippet extractor, we can track all highlighted shapes,
extract physical information about their position and
retrieve the elements that they contain.

To understand how the annotation process works, we
first introduce the structure of an XPS document, fo-
cussing in particular on its <Glyphs/> and <Path/>
elements. Note that a similar approach may be used for
other PDLs.

An XPS file is basically a ZIP archive containing a
set of XML files (one file for each physical page) de-
scribing the structure of the page at a graphical level.
All fonts and images are also part of the ZIP archive.
Glyphs elements are used within XPS to represent a
sequence of uniformly formatted text. The most impor-
tant attributes are the OriginX and OriginY defining
a glyph’s position on a page, the FontUri representing
the font to be used, the Indices representing the dis-
tance between single characters composing a glyph and
the UnicodeString containing the actual text content
of the glyph. An example of an XPS file containing a
Glyphs element is shown in Figure 4.

<Glyphs
Fill="#£f£000000" FontRenderingEmSize="14.7206"
FontUri="/Documents/1/Resources/Fonts/
083FE3E4-5F00-4F2E-85D9-B082CEBD4F5E . odttf"
StyleSimulations="None" OriginX="96" OriginY="109.92"
Indices="87;258;393;286;396,34;87;396;381;381;296,30;3"
UnicodeString="PaperProof"/>

Figure 4: XML representation of a Glyphs element



Path elements are used to add vector graphics and raw
images to an XPS page. They contain a Data attribute
describing the geometry and position. Figure 5 shows
an example of an XPS file containing two Path elements
rendering a blue rectangle with a black border.

<Path
Fill="#£f£f0000ff"
Data="F1 M 95.04,131.84 L 224.96,131.84 224.96,
203.84 95.04,203.84 z"/>
<Path
Stroke="#££000000" StrokeThickness="4"
StrokeLineJoin="Miter" StrokeMiterLimit="8"
StrokeStartLineCap="Round" StrokeEndLineCap="Round"
Data="F1 M 95.04,131.84 L 95.04,203.84 224.96,
203.84 224.96,131.84 z"/>

Figure 5: XML representation of Path elements

Since an XPS document is simply a ZIP archive, it is
easy to add new content to it without interfering with
the correct display of the paginated format. We store
the information about the structure of the document
retrieved from the highlighted shapes in a separate XML
document, called references.xml, and add it to the
XPS archive. The annotation process consists of the
following steps:

1. Create an XML node (Section, Paragraph, Table
or Graphic) for each highlighted shape and add a
child Shape containing an XML description of the
space covered by the highlighting shape.

2. Extract the physical information for each Glyphs
and Path node of the XPS file and check if it re-
sides within a highlighted shape.

3. If the Glyphs and Path nodes are part of the high-
lighted shape, create an XInclude node as a child
of the element representing the highlighted shape
within the references.xml file.

The XInclude element is a link to an external XML
element referenced by an XPath expression in the href
attribute [27]. By using such an approach, we reduce
the amount of redundant information within the XPS
document, since the original XML nodes are not repli-
cated in the references.xml file. An example of an
annotation for a section containing multiple paragraphs
is shown in Figure 6. In this example, the XInclude link
refers to the first XPS page 1.fpage.

By means of these XPS annotations, XPS elements
at any granularity level may be mapped back to the
original digital document in a dynamic way as described
in the next section.

6. FROM PAPER TO DIGITAL

In order to enable mapping back from any physi-
cal document instance to the corresponding digital el-
ements, we define a document mapper exploiting the
advantages of the dynamic granularity process during
the publishing process and an element finder to retrieve
the corresponding digital element within the source au-
thoring tool.

<section
id="iDoc:Sec:9603a909-66b7-419c-ae3c-4038762161d2"
PageNr="1" secName="Introduction" secRelIndex="1">
<paragraph
id="iDoc:Par:ef39a647-bb4-45c0-bd81-7c42adcdd2fd"
parent="iDoc:Sec:9603a909-66b7-419c-ae3c-4038762161d2"
relativePosition="1" secRelIndex="1">
<xi:include href="1.fpage" parse="xml"
xpointer="element (/1/2)"/>
<xi:include href="1.fpage" parse="xml"
xpointer="element (/1/3)"/>
<shape>
<polygon>
<point><x>74.4</x><y>160.0</y></point>
<point><x>74.4</x><y>144.0</y></point>

</polygon>
</shape>
< /paragraph>
<shape>
<rectangle>
<upperLeft>
<point><x>72.96</x><y>140.0</y></point>
< /upperLeft>
<size>
<width>648.0</width><height>146.8</height>
< /size>
< /rectangle>
</shape>
</section>

Figure 6: Annotation of paragraph elements

Document Mapper

Once the PDL annotation has been successfully per-
formed, it is possible to build a hierarchy of elements
which recursively contains other elements as outlined
earlier in Figure 3. We defined all the structural ele-
ments (section, paragraph, word, character) as objects
that extend the base abstract class Element. This class
contains the basic fields and methods common to all
elements. These element objects build a hierarchical
structure defined through the getElements() method
computing an element’s child elements as illustrated in
Figure 7.

Section

getElements()

Paragraph
getElements()
Paragraph
N getElements()
Graphic Glyphs
Table Glyphs Word
Paragraph Glyphs Word
etElements()
Table Glyphs Word |-
Picture Word Character
Character
Character
Character

Figure 7: Element hierarchy



To retrieve a section’s elements, getElements () first
highlights the elements contained within the section in
the authoring tool and produces the highlighted XPS
file. The XPS file is parsed, the XML representations of
the subelements are retrieved and the corresponding ob-
jects are created. Note that for graphical objects there is
no implementation of the getElements () method since
a raw image does not contain other elements.

For Paragraph elements, getElements () returns a list
of Word objects. The method first creates Glyphs ob-
jects according to the glyphs node contained in the XML
representation of the paragraph and calls the method
getElements() for each of the Glyphs objects. The
subelements of a Paragraph are therefore the words
composing it.

To get the position and shapes of a paragraph’s words,
several operations have to be computed locally on the
XPS file. As outlined before, the XPS Glyphs element
stores the physical coordinates of the beginning of the
glyph, the URI of the font used to render the text, the
textual content of the glyph and a list of indices. By
combining all this information, it is possible to access
the dimensions of every single word composing a glyph
and also of all the characters composing a word. This
approach is used in the getElements () implementation
for Paragraph and Word elements.

Element Finder

When printing the document, the highest possible gran-
ularity level is retrieved from the digital document and
an XPS file is created and annotated. In order to re-
trieve a digital element from paper, an element finder
extracts the information about selected elements from
the XPS file and forwards it to a physical-digital adapter
that retrieves the corresponding digital elements in the
source authoring tool.

Depending on the elements selected on paper, the
findElements () method provided by the element finder
returns one or more elements. The system relies on
the gestures that a user performs on paper to under-
stand their intentions. For instance, the system does
not know whether a user wants to select an entire word
or only some of its characters. Therefore, we imple-
mented a simple algorithm for the automatic resolution
of the granularity level.

Starting from the highest element granularity (i.e. sec-
tion), the system first checks how many elements have
been selected by the gesture. If more than one element
is found, we are already at the correct granularity level
and the elements are returned. If only one element is
found, it might be because the desired granularity level
is lower than the current one and the paragraphs, ta-
bles and graphics contained within the section have to
be analysed. This process continues recursively until the
lowest possible granularity level is found. If, during this
process, all subelements of a parent node are selected
by the gesture, it means that the gesture has to be ap-
plied at a higher granularity and the system goes back
to the parent level. The resulting algorithm is outlined
in Figure 8.

Since the retrieval of elements implemented within
the findElements () method has to be general enough

Input: shape S on paper
Output: selected digital element(s)

Set Granularity level G at the highest possible value

while not at lowest granularity do

search elements within shape S with granularity=G

if all elements at granularity G found then
G = Parent.granularity
return Parent

end

else if only one element E found then

| G = E.granularity

end

else if more elements found then

return all elements found

end
else
no elements found
return nothing
end

end

Figure 8: Dynamic granularity algorithm

to be adapted to every authoring tool, we decided to
use a very simple method where the relative position of
elements within their parents is taken into considera-
tion. When the elements are published within the XPS
repository, a reference to their parent and their relative
position is inserted along with all the information about
their content and physical position. Figure 9 shows a
snippet of the XML file which semantically annotates
the XPS. It is possible to see the relationship between
a section and its first paragraph.

<section
id=" iDoc:Sec:9603a909-66b7-419c-ae3c-4038762161 "
pageNr="1" secName="Introduction" secRelIndex="1">
<paragraph
id="iDoc:Par:ef39a647-bb4-45c0-bd81-7c42adcdd2fd"
parent=" iDoc:Sec:9603a909-66b7-419c-ae3c-4038762161 "
relativePosition="1" secRelIndex="1">

</paragraph>
< /section>
Figure 9: Relative element position

This additional information is used in the retrieval
phase, according to a two phase operation. To better
explain the retrieval process, let us have a look at an
example outlined by the sequence diagram in Figure 10.
In this example, a digital pen is used to select a word
in a printed document and we want to get access to the
corresponding digital element within the authoring tool.

Starting from the coordinates received from the pen,
the document mapper calls the findElements () method
of the ElementFinder class. This method retrieves from
the XPS annotations the physical elements bound to
these coordinates. As explained above, it might happen
that no elements are bound to this position causing the
need to analyse the digital document at a finer granular-
ity level. In this case, the highlighting process is started
and the Publisher generates a new version of the anno-
tated physical document containing more detailed struc-
tural information. The second phase runs in the oppo-
site direction. The counting feature is implemented in
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Figure 10: Paper-digital sequence diagram

the PhysicalDigitalAdapter class which, given one or
more elements retrieved from the XPS file, gets the cor-
responding digital elements from the authoring tool by
calling the getDigitalObject () method. By using the
example above, the section found in the first phase is
retrieved within the authoring tool and, based on the
relative position of its children, the correct paragraph
and word within the paragraph is found. Once this pro-
cess is completed, the digital document is retrieved and
the action defined through the digital pen on paper may
be executed within the source authoring tool.

The supported structural mapping opens up a wide
range of possibilities of interaction between digital and
paper documents. In the next section we introduce the
PaperProof proof-editing application that we have de-
veloped based on the presented mapping approach.

7. PAPERPROOF

Many authoring tools provide a way to track changes
within a document. Whenever this functionality is used
changes are made visible to the user rather than simply
being executed on the text. They are therefore consid-
ered as tentative operations that can later be individ-
ually accepted or rejected, either by the same user or
by other document editors in the case of collaborative
authoring.

PaperProof makes use of the OpenOffice change track-
ing functionality in order to translate operations that a
user performs on a printed OpenOffice document with
a digital Anoto-based pen back into the digital docu-
ment instance. Figure 11 shows the physical and digital
representations of a text document processed by our sys-
tem. On the left-hand side, the marks are done on paper

with a digital pen and, on the right-hand side, they are
transferred into OpenOffice.

Once a document has been printed on paper, the
proof-editing process can start. In order to execute com-
mands in the PaperProof system, the five operations
insert, delete, replace, move and annotate have been
defined.

It is possible to apply operations at different granu-
larity levels such as section, paragraph, table, graphics,
word or character. One author might want to delete
a whole paragraph, while another author just wants to
correct a typo at the character level. An annotation
might be made for a whole section or just for a par-
ticular word. The different granularity levels are auto-
matically recognised by PaperProof using the approach
outlined in Section 6.

In order to initiate commands for the desired opera-
tions, PaperProof makes use of gestures. Each operation
is defined by simple or composed gestures recognised by
the iGesture framework [23]. In the case of insert oper-
ations or annotations, an Intelligent Character Recog-
nition software [26] further processes the pen input and
translates the handwritten information into a string to
be added to the digital document. Every operation is
composed of one or more gestures, optionally followed
by some textual input. The different gesture-based op-
erations are illustrated in Figure 12. Please note that
different gestures can be used for the same operation.

Depending on the gesture class, different granularity
levels may be recognised and the system reacts in dif-
ferent ways.

e Section: annotate and delete are the two sup-
ported operations. The whole content of the sec-
tion will be annotated or removed.

e Graphics: the delete operation which removes
the graphics from a document is the only operation
currently supported.

e Table: annotate, delete and move operations are
supported. The annotation is inserted in the first
cell of the table and, in the case of a deletion, only
the content of the table is deleted, but not the
table itself.

e Text: this category involves paragraphs, words
and characters. All operations are supported.

Since users can make multiple corrections, it is im-
portant to ensure that the execution of an operation
does not influence the position of succeeding operations
within the digital document. Therefore, we first collect
all operations with the digital pen and synchronise it
with the OpenOffice source document. Collecting the
operations might also be done in a mobile environment
with the user on the move. In such a case, all informa-
tion would be stored within the pen and the synchroni-
sation would occur when users return to their computer.
However, some sort of feedback would be useful to in-
form the user about the performed operations. Unfortu-
nately, there is currently no way to provide feedback on
the digital pens. This is a known issue and there have
been solutions proposed to solve this problem [10]. In
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Figure 11: PaperProof

PaperProof, we currently only use the computer screen
for feedback.

It may happen that a gesture is not recognised or
that the written text is not detected correctly. For that
reason, we provide an undo button which can be used
to iteratively undo operations. As shown in Figure 11a,
the synchronise and undo buttons are currently printed
in the document header. As soon as the corrections are
transferred to the system, PaperProof makes use of the
approach outlined in Section 6 to retrieve the elements
to be edited and execute the edit operations. Since we
are using the change tracking functionality offered by
OpenOffice, a user may still go through all edits and
specify which to accept and reject.

Delete = or —

Replace = or — + ICR

Insert \/ or \/ + ICR

Move or I or < + > or I or I + |
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Figure 12: PaperProof gestures

Note that based on the OpenOffice change tracking
functionality that supports different authors, our ap-
plication could easily be extended into a collaborative
proof-editing system. In this case, a document could be
printed several times and each copy distributed to a dif-
ferent author. Existing digital pens provide unique IDs
enabling the system to handle corrections from different
reviewers.

8. IMPLEMENTATION

The implementation of the PaperProof application is
based on the four main components, iPublish, iDoc,
iPaper and iServer, that have been developed for general
paper-digital integration and interaction. We will first
briefly introduce those four components and then pro-
vide specific implementation details about PaperProof.

The iPublish component consists of a series of plug-
ins defined for different kinds of documents. Depending
on the type of document we are interested in (PDF, Mi-
crosoft Word, OpenOffice, etc.), iPublish allows specific
plug-ins to be defined that either track structured ele-
ments from within an authoring tool or analyse existing
paginated documents. The basic purpose of the iPublish
layer is to identify both the physical and the structural
information of the document. Plug-ins have already
been defined for the automatic authoring and publish-
ing of documents coming from a Content Management
System [15] and for the semantic analysis of PDF doc-
uments [17]. During the development of PaperProof, a
new iPublish plug-in for OpenOffice was defined based
on the OpenOffice SDK [18] that allows programmatic
access to all of the features offered by the OpenOffice
authoring suite. By using the SDK API, we could get
access to the structural information of the document
stored within the document in a tree-based model and
define the OpenOffice highlighters outlined in Section 5.
Using the same approach, other plug-ins for a given au-
thoring tool, such as a PaperProof plug-in for Microsoft
Word, could be defined. The implementation of this
specific iPublish plug-in might be based completely on
the existing infrastructure. However, since the creation
of an XPS file from a Microsoft Office document through
the plug-in for XPS already provides all the structural
information that our infrastructure needs, the highlight-
ing phase would be simplified and only a specific snippet
extractor for Microsoft Office needs to be implemented.

The iDoc framework is based on a mixed digital and
physical model, which is able to store metadata about



both the digital and paper instances of a document [29].
This mixed model is based on two distinct parts repre-
senting metadata coming from logical structures, also
referred to as digital documents, and paginated formats
sometimes called physical documents. The idea outlined
in Section 5 to have the possibility to refer to the logical
representation of the objects at every level of granularity
was developed according to the composite design pat-
tern shown earlier in Figure 3 and is one of the building
blocks of the model implemented within iDoc.

The iServer and iPaper components are responsible
for linking paper to digital services [22]. During the
printing process, all information required to identify
the interactive paper documents as well as link defini-
tions are published to the iServer database. The iPaper
plug-in is then responsible for enabling access to those
links by selecting specific active areas on a paper doc-
ument. Each time a user points to an (x,y) position
within an active area, the iPaper plug-in resolves the
selected shape and its associated links will be activated.
In order to resolve the correct shape, the iPaper plug-in
needs three inputs: a document identifier, a page num-
ber and the (x,y) position within the page.

The definition of the mapping from paper back to
OpenOffice and the implementation of PaperProof in-
volved two major tasks: the implementation of an iPub-
lish plug-in for OpenOffice and the design and imple-
mentation of an iDoc extension that uses XPS docu-
ments to retrieve elements within the original digital
document. In the rest of this section, we provide more
details about the PaperProof implementation.

After a new digital document has been created with
OpenOffice, the iPublish plug-in enables the publishing
of an interactive paper version of the document based
on Anoto technology. The structure of the file is anal-
ysed and information about the highest granularity level
is extracted. An XPS file is then generated and anno-
tated and the document is ready to be edited on paper.
In order to support this paper-based interaction, the
information about the Anoto pattern used and the lo-
cation of the OpenOffice document has to be published
to the iPaper plug-in.

As soon as an area on the page is touched with a dig-
ital pen, a special operation buffer is initialised and the
operations, recognised by the combination of iGesture
and ICR as explained in Section 7, will be stored. The
entire application logic is implemented as an active com-
ponent within the iPaper framework. An active compo-
nent is basically a piece of program code that is loaded
at link activation time and becomes a handler for the
information from the input device [22].

When all annotations and corrections have been col-
lected, the user touches the synchronize button (see
Figure 1la) which activates another active component
to retrieve the corrections from the buffer and send
them to the document mapper. In order to do that,
PaperProof provides the Corrections class with the sig-
nature shown in Figure 13. The constructor of this class
requires four parameters: a list of edit operations to be
performed, the path and the version of the OpenOffice
document to be edited and the path of the XPS file that
contains the mixed digital-physical information.

El corrections

ﬁ? Corrections(operations: List<Operation>, ooFile: File, version: int, xpsFile: File)
4% execute()

Figure 13: Corrections class

The Corrections class is the connection between the
existing iServer/iPaper infrastructure, the iDoc frame-
work and the PaperProof application. A schematic rep-
resentation of the information flow is outlined in Fig-
ure 14. The execute() method iterates over the re-
ceived edit operations and extracts the (x,y) position
of the corrections from the digital pen. At this stage,
the XPSElementFinder class extracts information about
the selected printed elements from the XPS file which
is then forwarded to the AdapterXPS00 class retrieving
the corresponding digital OpenOffice elements.

publish()
OO Document Mapper f | XPS

Publisher I‘

Element 1

Element2 |g

getOOEntity() findElements()
| |
AdapterXPSOO |—| XPSElementFinder |

Figure 14: Information flow in PaperProof

After the corresponding digital elements have been
retrieved, a ChangeTracker will transform the user op-
erations into OpenOffice annotations and edits. As al-
ready discussed in Section 7, the changes to be applied
in OpenOffice depend on the detected granularity level.
For that reason, there exist four types of ChangeTrack-
ers for sections, tables, graphics and text, respectively.
Moreover, before executing any corrections, we first in-
stantiate the ChangeTrackers needed for the execution
of all the corrections. In the case of several authors,
all their ChangeTrackers get instantiated at the same
time and all the elements of the document that have
to be corrected are properly referenced. Even if they
were moved by a previous operation, the corresponding
ChangeTrackers are still able to retrieve them. In this
way, we ensure the safe execution of all corrections.

9. DISCUSSION

In Section 3, we presented the requirements for paper-
digital proof-editing tools and highlighted some of the
features that are missing in existing systems. After pre-
senting and validating our solution, we now position it
with respect to the original requirements.

An analysis of existing approaches shows that they
differ significantly from the solution presented in this
paper. In terms of paper-digital interaction, our proof-
editing application seamlessly integrates paper and digi-
tal document versions in a similar way to ProofRite and



paper-based annotations are automatically transferred
to the original digital document. However, instead of
simply integrating handwritten annotations into the dig-
ital document, PaperProof interprets them and applies
the edits to the digital document instance.

In digital-only solutions as well as existing paper-
digital approaches, captured annotations will reflow if
the digital copy is edited. However, the notes are still
bound to relative positions within the digital document
instead of referring to structural elements within the
document. ProofRite refers to the position captured
from paper, while digital-only systems retrieve the po-
sition returned by the stylus used on a display. Due to
the lack of a binding between the structural elements of
a document on paper and those in digital form, existing
systems do not support the automatic integration of ed-
its and only provide visual clues. Instead they simply
copy the annotations into the digital document and still
require editing operations to be performed manually.

In contrast, annotations and editing operations are
interpreted and executed by PaperProof. Our system is
unique in analysing paper-based edits and transforming
them into operations and textual annotations based on
gesture recognition and ICR technologies. To the best
of our knowledge, our system is the only paper-based
editing solution that also exploits change tracking func-
tionality offered by digital authoring tools.

The automatic publishing of interactive paper docu-
ments is also supported by PaperProof which makes use
of the iDoc Virtual Printer [16] to support the produc-
tion of an augmented document based on Anoto tech-
nology. The virtual printer can be selected from the list
of available devices and the digital document is auto-
matically analysed and augmented with Anoto pattern.
The user does not have to perform any additional steps
and can start the proof-editing session as soon as the
document is retrieved from the printer.

PaperProof also reveals some issues to be solved in
terms of usability. It is often difficult to understand a
user’s intentions by using only pen-based gestures. The
PaperProof gestures have been selected in a way that
should feel natural to the end user. However, we plan
to do some user studies in order to evaluate the usability
of the paper-digital user interface.

The automatic granularity check presented in Sec-
tion 6 enables a much smoother interaction with the
system, without the user having to explicitly select the
granularity level. However, dealing with precise gestures
may lead to a lack of accuracy on the user side, which
may easily cause unexpected results. For example, if
the pen accidentally touches the next word while delet-
ing a word, that would also be deleted. Since the user
intention is not known a priori, the system should auto-
matically select the best solution. What does it mean,
for example, if a user crosses out all the characters in a
word except the last one? Is there only a lack in preci-
sion or should the last character really not be removed?
Our algorithm for the automatic granularity detection
works fine but the analysis of user intention is still a
source of potential misinterpretations. User studies will
also be required to determine the best way to handle
these issues.

While the retrieval of digital elements based on the
selection of the corresponding element on paper works
well, there are still some problems in terms of perfor-
mance. This is probably due to the current implemen-
tation which uses the XPS file as the repository for ele-
ments. This is costly in terms of performance since pars-
ing an XML file and searching for an element is a rather
slow operation. Moving to the document database pro-
vided by the iDoc framework should lead to faster ele-
ment retrieval.

The lookup of digital PaperProof elements is based
on the relative position of an element with respect to its
parent element. This is a generic approach which could
also be used in the development of different plug-ins,
for example a PaperProof authoring tool for Microsoft
Word. A future Microsoft Word plug-in might be com-
pletely based on the existing infrastructure. The imple-
mentation of the iPublish plug-in would be straightfor-
ward since the XPS documents created from a Microsoft
Word document already contain the semantic informa-
tion required by our infrastructure. Therefore, the only
parts that would have to be changed are the PaperProof
application itself and the iDoc extension with the im-
plementation of a simple snippet extractor adapted to
the semantic information stored within the XPS files
generated by Microsoft Word.

From this brief analysis, we see how our PaperProof
application and the related technologies go a step fur-
ther in the definition of an effective paper-digital proof-
editing system and provide a solution for some of the
open issues presented in Section 3. The PaperProof ap-
plication further demonstrates the feasibility of a bidi-
rectional paper-digital mapping.

10. CONCLUSIONS

We have presented a novel approach for capturing the
structural model of a digital document during the print-
ing process in order to maintain a logical, bidirectional
mapping between digital and paper instances of a docu-
ment. Our approach has been validated by PaperProof,
a paper-digital application for document proof-editing
that, not only enables comments to be captured as an-
notations, but also provides digital editing functional-
ity based on the interpretation of handwritten gesture-
based commands.

We plan to extend PaperProof in order to fully sup-
port multiple simultaneous reviews of the same docu-
ment. This requires the definition of a version model
which has to be shared between the paper and digital
document instances. We also plan to carry out user
studies and investigate various issues that may effect
system usability, including feedback mechanisms and
the gesture-based interaction design. Last but not least,
we aim to develop an alternative PaperProof implemen-
tation based on Microsoft Word.
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